×

zbMATH — the first resource for mathematics

Estimating the Pareto front of a hard bi-criterion competitive facility location problem. (English) Zbl 1355.90036
Pardalos, Panos M. (ed.) et al., Advances in stochastic and deterministic global optimization. Cham: Springer (ISBN 978-3-319-29973-0/hbk; 978-3-319-29975-4/ebook). Springer Optimization and Its Applications 107, 255-272 (2016).
Summary: We deal with the location problem for a franchise type expanding firm in competition with other firms in a geographical area. The firm aims at maximization of the market share captured by the new facilities and minimization of the lost market share of the old facilities caused by the entering of the new facilities in the market. The market share of each facility is estimated assuming that customers are served by the most attractive facility. A new tie breaking rule is introduced to serve the customers for which there are more than one facility with the maximum attraction, which leads to a hard nonlinear bi-objective optimization problem. A heuristic algorithm is proposed which obtains a good approximation of the Pareto front when the new facilities have to be selected from a finite set of candidates.
For the entire collection see [Zbl 1359.90005].
MSC:
90B80 Discrete location and assignment
90C29 Multi-objective and goal programming
Software:
SPEA2
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aboolian, R., Berman, O., Krass, D.: Competitive facility location and design problem. Eur. J. Oper. Res. 182 (1), 40–62 (2007) · Zbl 1128.90037 · doi:10.1016/j.ejor.2006.07.021
[2] Berman, O., Krass, D.: Locating multiple competitive facilities: spatial interaction models with variable expenditures. Ann. Oper. Res. 111, 197–225 (2002) · Zbl 1013.90086 · doi:10.1023/A:1020957904442
[3] Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154 (1), 29–50 (2007) · Zbl 1146.90060 · doi:10.1007/s10479-007-0186-0
[4] Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria. Springer Optimization and Its Applications, vol. 17. Springer, New York (2008) · Zbl 1143.91004
[5] Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York, NJ (2007) · Zbl 1142.90029
[6] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002) · Zbl 05451853 · doi:10.1109/4235.996017
[7] Doerner, K.F., Gutjahr, W.J., Nolz, P.C.: Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectrum 31 (3), 651–678 (2009). doi: 10.1007/s00291-008-0126-7 . http://dx.doi.org/10.1007/s00291-008-0126-7 · Zbl 1163.90598 · doi:10.1007/s00291-008-0126-7
[8] Drezner, T., Drezner, Z.: Finding the optimal solution to the Huff based competitive location model. Comput. Manag. Sci. 1 (2), 193–208 (2004) · Zbl 1115.90357 · doi:10.1007/s10287-004-0009-6
[9] Farahani, R.Z., SteadieSeifi, M., Asgari, N.: Multiple criteria facility location problems: a survey. Appl. Math. Modell. 34 (7), 1689–1709 (2010). doi: 10.1016/j.apm.2009.10.005 . http://www.sciencedirect.com/science/article/pii/S0307904X09003242 · Zbl 1193.90143 · doi:10.1016/j.apm.2009.10.005
[10] Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45 (0), 92–118 (2014) · doi:10.1016/j.omega.2013.08.006
[11] Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Planar location and design of a new facility with inner and outer competition: an interval lexicographical-like solution procedure. Netw. Spat. Econ. 7, 19–44 (2007) · Zbl 1137.90580 · doi:10.1007/s11067-006-9005-4
[12] Francis, R.L., Lowe, T.J., Tamir, A.: Demand point aggregation for location models. In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Application and Theory, pp. 207–232. Springer, Berlin (2002) · Zbl 1018.90023 · doi:10.1007/978-3-642-56082-8_7
[13] Friesz, T.L., Miller, T., Tobin, R.L.: Competitive networks facility location models: a survey. Pap. Reg. Sci. 65, 47–57 (1998) · doi:10.1111/j.1435-5597.1988.tb01157.x
[14] Ghosh, A., Craig, C.S.: FRANSYS: a franchise distribution system location model. J. Retail. 67 (4), 466–495 (1991)
[15] Goel, T., Deb, K.: Hybrid methods for multi-objective evolutionary algorithms. In: Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, pp. 188–192 (2002)
[16] Hakimi, L.: Location with spatial interactions: competitive locations and games. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 367–386. Springer, Berlin (1995)
[17] Huapu, L., Jifeng, W.: Study on the location of distribution centers: a bi-level multi-objective approach. In: Logistics, pp. 3038–3043. American Society of Civil Engineers (2009)
[18] Huff, D.L.: Defining and estimating a trade area. J. Market. 28, 34–38 (1964) · doi:10.2307/1249154
[19] Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8 (2), 149–172 (2000) · Zbl 05412708 · doi:10.1162/106365600568167
[20] Lančinskas, A., Žilinskas, J.: Solution of multi-objective competitive facility location problems using parallel NSGA-II on large scale computing systems. In: Manninen, P., Oster, P. (eds.) Applied Parallel and Scientific Computing. Lecture Notes in Computer Science, vol. 7782, pp. 422–433. Springer, Berlin, Heidelberg (2013). doi: 10.1007/978-3-642-36803-5_31 · Zbl 06315114 · doi:10.1007/978-3-642-36803-5_31
[21] Lančinskas, A., Ortigosa, P.M., Žilinskas, J.: Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm. Nonlinear Anal.: Modell. Control 18 (3), 293–313 (2013) · Zbl 1294.90056
[22] Liao, S.H., Hsieh, C.L.: A capacitated inventory-location model: formulation, solution approach and preliminary computational results. In: Chien, B.C., Hong, T.P., Chen, S.M., Ali, M. (eds.) Next-Generation Applied Intelligence. Lecture Notes in Computer Science, vol. 5579, pp. 323–332. Springer, Berlin, Heidelberg (2009) · Zbl 05570921 · doi:10.1007/978-3-642-02568-6_33
[23] Medaglia, A.L., Villegas, J.G., Rodríguez-Coca, D.M.: Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. J. Heuristics 15 (2), 153–176 (2009) · Zbl 1176.90662 · doi:10.1007/s10732-008-9070-6
[24] Peeters, P.H., Plastria, F.: Discretization results for the Huff and Pareto-Huff competitive location models on networks. Top 6, 247–260 (1998) · Zbl 0916.90191 · doi:10.1007/BF02564790
[25] Pelegrín, B., Fernández, P., García, M.D.: On tie breaking in competitive location under binary customer behavior, OMEGA-International Journal of Management Science 52, 156–167 (2015) · doi:10.1016/j.omega.2014.10.010
[26] Plastria, F.: Static competitive facility location: an overview of optimisation approaches. Eur. J. Oper. Res. 129 (3), 461–470 (2001) · Zbl 1116.90372 · doi:10.1016/S0377-2217(00)00169-7
[27] Plastria, F.: Avoiding cannibalization and/or competitor reaction in planar single facility location. J. Oper. Res. Soc. Jpn. 48, 148–157 (2005) · Zbl 1274.90201
[28] Redondo, J.L., Fernández, J., Álvarez, J.D., Arrondoa, A.G., Ortigosa, P.M.: Approximating the Pareto-front of continuous bi-objective problems: application to a competitive facility location problem. In: Casillas, J., Martnez-Lpez, F.J., Corchado Rodrguez, J.M. (eds.) Management Intelligent Systems. Advances in Intelligent Systems and Computing, vol. 171, pp. 207–216. Springer, Berlin, Heidelberg (2012)
[29] ReVelle, C.S., Eiselt, H.A., Daskin, M.S.: A bibliography for some fundamental problem categories in discrete location science. Eur. J. Oper. Res. 184 (3), 817–848 (2008) · Zbl 1141.90025 · doi:10.1016/j.ejor.2006.12.044
[30] Schaffer, J.D., Grefenstette, J.J.: Multi-objective learning via genetic algorithms. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence – Volume 1, IJCAI’85, pp. 593–595. Morgan Kaufmann Publishers, San Francisco, CA (1985)
[31] Serra, D., Colomé, R.: Consumer choice and optimal locations models: formulations and heuristics. Pap. Reg. Sci. 80 (4), 439–464 (2001) · doi:10.1007/PL00013632
[32] Serra, D., ReVelle, C.: Competitive location in discrete space. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 367–386. Springer, Berlin (1995) · doi:10.1007/978-1-4612-5355-6_17
[33] Srinivas, N., Deb, K.: Multiobjective optimization using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 2, 221–248 (1994) · Zbl 05412883 · doi:10.1162/evco.1994.2.3.221
[34] Suárez-Vega, R., Santos-Penate, D.R., Dorta-Gonzalez, P.: Discretization and resolution of the (r | X p )-medianoid problem involving quality criteria. Top 12 (1), 111–133 (2004) · Zbl 1148.90332 · doi:10.1007/BF02578927
[35] Suárez-Vega, R., Santos-Penate, D.R., Dorta-González, P.: The follower location problem with attraction thresholds. Pap. Reg. Sci. 86 (1), 123–137 (2007) · doi:10.1111/j.1435-5957.2007.00104.x
[36] Villegas, J.G., Palacios, F., Medaglia, A.L.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Ann. Oper. Res. 147, 109–141 (2006) · Zbl 1183.90293 · doi:10.1007/s10479-006-0061-4
[37] Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the Congress on Evolutionary Computation (CEC), pp. 3234–3241. IEEE Press, New York (2006)
[38] Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Eiben, A., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature – PPSN V. Lecture Notes in Computer Science, vol. 1498, pp. 292–301. Springer, Berlin, Heidelberg (1998) · doi:10.1007/BFb0056872
[39] Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Trans. Evol. Comput. 3 (4), 257–271 (1999) · Zbl 05452215 · doi:10.1109/4235.797969
[40] Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)
[41] Zopounidis, C., Pardalos, P.M. (eds.): Handbook of Multicriteria Analysis. Applied Optimization, vol. 103. Springer, Berlin, Heidelberg (2010) · Zbl 1207.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.