×

zbMATH — the first resource for mathematics

Gauge theory correlators from non-critical string theory. (English) Zbl 1355.81126
Summary: We suggest a means of obtaining certain Green’s functions in 3+1-dimensional supersymmetric Yang-Mills theory with a large number of colors via non-critical string theory. The non-critical string theory is related to critical string theory in anti-deSitter background. We introduce a boundary of the anti-deSitter space analogous to a cut-off on the Liouville coordinate of the two-dimensional string theory. Correlation functions of operators in the gauge theory are related to the dependence of the supergravity action on the boundary conditions. From the quadratic terms in supergravity we read off the anomalous dimensions. For operators that couple to massless string states it has been established through absorption calculations that the anomalous dimensions vanish, and we rederive this result. The operators that couple to massive string states at level \(n\) acquire anomalous dimensions that grow as \(2(ng_{YM}\sqrt{2N})^{1/2}\) for large ‘t Hooft coupling. This is a new prediction about the strong coupling behavior of large \(N\) SYM theory.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Polyakov, A.M., Nucl. phys. B, 164, 171, (1980)
[2] Makeenko, Y.M.; Migdal, A.A., Phys. lett. B, 88, 135, (1979)
[3] Hooft, G.’t, Nucl. phys. B, 72, 461, (1974)
[4] A.M. Polyakov, String theory and quark confinement, hep-th/9711002. · Zbl 0999.81527
[5] Fradkin, E.S.; Tseytlin, A.A., Phys. lett. B, 158, 316, (1985)
[6] Callan, C.G.; Martinec, E.J.; Perry, M.J.; Friedan, D., Nucl. phys. B, 262, 593, (1985)
[7] J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724, hep-th/9510017.
[8] S.S. Gubser, I.R. Klebanov, A.W. Peet, Phys. Rev. D 54 (1996) 3915, hep-th/9602135.
[9] I.R. Klebanov, Nucl. Phys. B 496 (1997) 231, hep-th/9702076.
[10] S.S. Gubser, I.R. Klebanov, A.A. Tseytlin, Nucl. Phys. B 499 (1997) 217, hep-th/9703040.
[11] S.S. Gubser, I.R. Klebanov, Phys. Lett. B 413 (1997) 41, hep-th/9708005.
[12] Horowitz, G.T.; Strominger, A., Nucl. phys. B, 360, 197, (1991)
[13] E. Witten, Nucl. Phys. B 460 (1996) 335, hep-th/9510135.
[14] J. Maldacena, The Large N limit of superconformal field theories and supergravity, hep-th/9711200.
[15] Polchinski, J., Nucl. phys. B, 346, 253, (1990)
[16] Das, S.R.; Jevicki, A., Mod. phys. lett. A, 5, 1639, (1990)
[17] G.W. Gibbons, P.K. Townsend, Phys. Rev. Lett. 71 (1993) 3754, hep-th/9307049.
[18] G.W. Gibbons, G.T. Horowitz, P.K. Townsend, Class. Quant. Grav. 12 (1995) 297, hep-th/9410073.
[19] S. Hyun, U duality between three-dimensional and higher dimensional black holes, hep-th/9704005.
[20] H.J. Boonstra, B. Peeters, K. Skenderis, Phys. Lett. B 411 (1997) 59, hep-th/9706192.
[21] K. Sfetsos, K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for nonextremal black holes, hep-th/9711138. · Zbl 0920.53048
[22] Brown, J.D.; Henneaux, M., Commun. math. phys., 104, 207, (1986)
[23] J. Erdmenger, H. Osborn, Nucl. Phys. B 483 (1997) 431, hep-th/9605009.
[24] Moore, G.; Seiberg, N.; Staudacher, M., Nucl. phys. B, 362, 665, (1991)
[25] S. Ferrara, C. Fronsdal, Conformal Maxwell Theory As a Singleton Field Theory on AdS5, IIB Threebranes and Duality, hep-th/9605009. · Zbl 1081.81549
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.