×

zbMATH — the first resource for mathematics

Small-scale universality in fluid turbulence. (English) Zbl 1355.76027
Summary: Turbulent flows in nature and technology possess a range of scales. The largest scales carry the memory of the physical system in which a flow is embedded. One challenge is to unravel the universal statistical properties that all turbulent flows share despite their different large-scale driving mechanisms or their particular flow geometries. In the present work, we study three turbulent flows of systematically increasing complexity. These are homogeneous and isotropic turbulence in a periodic box, turbulent shear flow between two parallel walls, and thermal convection in a closed cylindrical container. They are computed by highly resolved direct numerical simulations of the governing dynamical equations. We use these simulation data to establish two fundamental results: (i) at Reynolds numbers Re \(\sim\) 102 the fluctuations of the velocity derivatives pass through a transition from nearly Gaussian (or slightly sub-Gaussian) to intermittent behavior that is characteristic of fully developed high Reynolds number turbulence, and (ii) beyond the transition point, the statistics of the rate of energy dissipation in all three flows obey the same Reynolds number power laws derived for homogeneous turbulence. These results allow us to claim universality of small scales even at low Reynolds numbers. Our results shed new light on the notion of when the turbulence is fully developed at the small scales without relying on the existence of an extended inertial range.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Doklady Akademii Nauk. Rossiyskaya Akademiya Nauk 30 pp 9– (1941)
[2] She, Physical Review Letters 72 (3) pp 336– (1994) · doi:10.1103/PhysRevLett.72.336
[3] Sreenivasan, Annual Review of Fluid Mechanics 29 (1) pp 435– (1997) · doi:10.1146/annurev.fluid.29.1.435
[4] Physica. D 215 pp 166– (2006) · Zbl 1331.76058 · doi:10.1016/j.physd.2006.01.012
[5] PNAS 109 (50) pp 20344– (2012) · doi:10.1073/pnas.1218747109
[6] 9 pp 89– (2007) · doi:10.1088/1367-2630/9/4/089
[7] 20 pp 045108– (2008) · Zbl 1182.76213 · doi:10.1063/1.2907227
[8] Annual Review of Fluid Mechanics 41 pp 165– (2009) · Zbl 1157.76017 · doi:10.1146/annurev.fluid.010908.165203
[9] J FLUID MECH 701 pp 419– (2012) · Zbl 1248.76080 · doi:10.1017/jfm.2012.170
[10] Niemela, Nature 404 (6780) pp 837– (2000) · doi:10.1038/35009036
[11] J FLUID MECH 706 pp 5– (2012) · Zbl 1275.76135 · doi:10.1017/jfm.2012.207
[12] Sano 40 (11) pp 6421– (1989) · doi:10.1103/PhysRevA.40.6421
[13] Ciliberto, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 54 (6) pp R5901– (1996) · doi:10.1103/PhysRevE.54.R5901
[14] Sreenivasan, Physical review. E, Statistical, nonlinear, and soft matter physics 65 (5 Pt 2) pp 056306– (2002) · doi:10.1103/PhysRevE.65.056306
[15] J COMPUT PHYS 133 pp 84– (1997) · Zbl 0904.76057 · doi:10.1006/jcph.1997.5651
[16] 15 pp 113063– (2013) · doi:10.1088/1367-2630/15/11/113063
[17] Yakhot, Physical review. E, Statistical, nonlinear, and soft matter physics 63 (2 Pt 2) pp 026307– (2001) · doi:10.1103/PhysRevE.63.026307
[18] J FLUID MECH 467 pp 289– (2002)
[19] Annual Review of Fluid Mechanics 41 pp 109– (2009) · Zbl 1157.76008 · doi:10.1146/annurev.fluid.010908.165218
[20] Paladin 35 (4) pp 1971– (1987) · doi:10.1103/PhysRevA.35.1971
[21] Sreenivasan 38 (12) pp 6287– (1988) · doi:10.1103/PhysRevA.38.6287
[22] Polyakov, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 52 (6) pp 6183– (1995) · doi:10.1103/PhysRevE.52.6183
[23] 121 pp 823– (2005) · Zbl 1089.76029 · doi:10.1007/s10955-005-8666-6
[24] J FLUID MECH 13 pp 82– (1962) · Zbl 0112.42003 · doi:10.1017/S0022112062000518
[25] Reviews of Modern Physics 66 pp 229– (1994) · doi:10.1103/RevModPhys.66.229
[26] Annual Review of Fluid Mechanics 42 pp 157– (2010) · Zbl 1345.76003 · doi:10.1146/annurev-fluid-121108-145445
[27] J FLUID MECH 225 pp 1– (1991) · Zbl 0721.76036 · doi:10.1017/S0022112091001957
[28] J FLUID MECH 177 pp 133– (1987) · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[29] J FLUID MECH 591 pp 145– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.