×

Order reduction and nonlinear behaviors of a continuous rotor system. (English) Zbl 1355.74044

Summary: An isotropic flexible shaft, acted by nonlinear fluid-induced forces generated from oil-lubricated journal bearings and hydrodynamic seal, is considered in this paper. Dimension reductions of the rotor system were carried out by both the standard Galerkin method and the nonlinear Galerkin method. Numerical simulations provide bifurcation diagrams, spectrum cascade, orbits of the disk center and Poincaré maps, to demonstrate the dynamical behaviors of the system. The results reveal transitions, or bifurcations, of the rotor whirl from being synchronous to non-synchronous as the unstable speed is exceeded. The non-synchronous oil/seal whirl is a quasi-periodic motion. In the regime of quasi-periodic motion, the “windows” of multi-periodic motion were found. The investigation shows that the nonlinear Galerkin method has an advantage over the standard one with the same order of truncations, because the influences of higher modes are considered by the former.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74H55 Stability of dynamical problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shaw, J., Shaw, S.: The effects of unbalance on oil whirl. Nonlinear Dyn. 1, 293–311 (1990) · doi:10.1007/BF01865277
[2] Muszynska, A.: Whirl and whip–Rotor/bearing stability problems. J. Sound Vib. 110, 443–462 (1986) · doi:10.1016/S0022-460X(86)80146-8
[3] Childs, D.W.: Dynamic analysis of turbulent annular seals based on Hirs’ lubrication. J. Lubr. Technol. 105, 429–439 (1983) · doi:10.1115/1.3254633
[4] San Andres, L.: Dynamic force and moment coefficients for short length annular seals. J. Tribol. 115, 61–70 (1993) · doi:10.1115/1.2920987
[5] Muszynska, A.: Improvements in lightly loaded rotor/bearing and rotor/seal models. ASME J. Vib. Acoust. 110, 129–136 (1988) · doi:10.1115/1.3269489
[6] Muszynska, A., Bently, D.E.: Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines. J. Sound Vib. 143, 103–124 (1990) · doi:10.1016/0022-460X(90)90571-G
[7] Muszynska, A., Bently, D.E.: Anti-swirl arrangements prevent rotor/seal instability. ASME J. Vib. Acoust. 111, 156–162 (1989) · doi:10.1115/1.3269836
[8] Ding, Q., Cooper, J.E., Leung, A.Y.T.: Hopf bifurcation analysis of a rotor/seal system. J. Sound Vib. 252, 817–833 (2002) · doi:10.1006/jsvi.2001.3711
[9] Hua, J., Swaddiwudhipong, S., Liu, Z.S., Xu, Q.Y.: Numerical analysis of nonlinear rotor–seal system. J. Sound Vib. 283, 525–542 (2005) · doi:10.1016/j.jsv.2004.04.028
[10] Cheng, M., Meng, G., Jing, J.: Non-linear dynamics of a rotor–bearing–seal system. Arch. Appl. Mech. 76, 215–227 (2006) · Zbl 1161.70348 · doi:10.1007/s00419-006-0017-9
[11] Shen, X., Zhao, M.: Effect of the seal force on nonlinear dynamics and stability of the rotor–bearing–seal system. J. Vib. Control 15, 197–217 (2009) · Zbl 06647673 · doi:10.1177/1077546307084440
[12] Ding, Q., Leung, A.Y.T.: Nonstationary processes of rotor/bearing system in bifurcation. J. Sound Vib. 268, 33–48 (2003) · doi:10.1016/S0022-460X(02)01577-8
[13] Ding, Q., Leung, A.Y.T.: Experimental study on nonlinear dynamic behaviors of a multi-bearing flexible rotor system. ASME J. Vib. Acoust. 127, 408–415 (2005) · doi:10.1115/1.1898336
[14] Younesian, D., Esmailzadeh, E.: Non-linear vibration of variable speed rotating viscoelastic beams. Nonlinear Dyn. 60, 193–205 (2010) · Zbl 1189.74049 · doi:10.1007/s11071-009-9589-6
[15] Ansari, M., Esmailzadeh, E., Younesian, D.: Internal–external resonance of beams on non-linear viscoelastic foundation traversed by moving load. Nonlinear Dyn. 61, 163–182 (2010) · Zbl 1204.74021 · doi:10.1007/s11071-009-9639-0
[16] Rega, G., Troger, H.: Dimension reduction of dynamical systems: methods, models, applications. Nonlinear Dyn. 4, 1–15 (2005) · Zbl 1142.37320 · doi:10.1007/s11071-005-2790-3
[17] Marion, M., Temam, R.: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26, 1139–1157 (1989) · Zbl 0683.65083 · doi:10.1137/0726063
[18] Matthies, H.G., Meyer, M.: Nonlinear Galerkin methods for the model reduction of nonlinear dynamical systems. Comput. Struct. 81, 1277–1286 (2003) · doi:10.1016/S0045-7949(03)00042-7
[19] Steindl, A., Troger, H.: Methods for dimension reduction and their application in nonlinear dynamics. Int. J. Solids Struct. 38, 2131–2147 (2001) · Zbl 1003.74032 · doi:10.1016/S0020-7683(00)00157-8
[20] Zhang, W.: A general mathematical model of nonlinear non-steady oil film force in dynamic load bearing. In: Wang, D.J., Qu, G.J. (eds.) Advances in Engineering Mechanics, pp. 158–167. Peking University Press, Beijing (1998)
[21] Zhang, W., Xu, X.F.: Modeling of nonlinear oil-film force acting on a journal with unsteady and nonlinear instability analysis under the model. Int. J. Nonlinear Sci. Numer. Simul. 1, 179–186 (2000) · Zbl 1172.76306
[22] Park, S., Chung, W.K., Youm, Y., Lee, J.W.: Natural frequencies and open-loop responses of an elastic beam fixed on a moving cart and carrying an intermediate lumped mass. J. Sound Vib. 230, 591–615 (2000) · doi:10.1006/jsvi.1999.2631
[23] Low, K.H.: On the methods to derive frequency equations of beams carrying multiple masses. Int. J. Mech. Sci. 43, 871–881 (2001) · Zbl 1009.74025 · doi:10.1016/S0020-7403(00)00052-7
[24] Foias, C., Manley, O., Temam, R.: Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. Math. Model. Numer. Anal. 22, 93–114 (1988) · Zbl 0663.76054
[25] Ding, Q., Leung, A.Y.T., Cooper, J.E.: Dynamic analysis of a self-excited system with hysteretic non-linearity. J. Sound Vib. 245, 151–164 (2001) · doi:10.1006/jsvi.2001.3559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.