×

zbMATH — the first resource for mathematics

Three-way decisions space and three-way decisions. (English) Zbl 1355.68256
Inf. Sci. 281, 21-52 (2014); erratum ibid. 357, 218-220 (2016).
Summary: Ideas of three-way decisions proposed by Yao come from rough sets. It is well known that there are three basic elements in three-way decisions theory, which are ordered set as to define three regions, object set contained in evaluation function and evaluation function to make three-way decisions. In this paper these three basic elements are called decision measurement, decision condition and evaluation function, respectively. In connection with the three basic elements this paper completes three aspects of work. The first one is to introduce axiomatic definitions for decision measurement, decision condition and evaluation function; the second is to establish three-way decisions space; and the third is to give a variety of three-way decisions on three-way decisions spaces. Existing three-way decisions are the special examples of three-way decisions spaces defined in this paper, such as three-way decisions based on fuzzy sets, random sets and rough sets etc. At the same time, multi-granulation three-way decisions space and its corresponding multi-granulation three-way decisions are also established. Finally this paper introduces novel dynamic two-way decisions and dynamic three-way decisions based on three-way decisions spaces and three-way decisions with a pair of evaluation functions.

MSC:
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, M. E.; Priestley, H. A., De Morgan algebras are universal, Discrete Math., 66, 1-13, (1987) · Zbl 0618.06006
[2] K.T. Atanassov, Intuitionistic fuzzy sets, in: V. Sequrev (Ed.), VII ITKR’s Session, Sofia (deposed in Central Sci. and Techn. Library, Bulg. Academy of Sciences, 1697/84), 1983 (in Bulgarian).
[3] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20, 87-96, (1986) · Zbl 0631.03040
[4] Bonikowski, Z.; Bryniarski, E.; Wybraniec-Skardowska, U., Extensions and intentions in the rough set theory, Inf. Sci., 107, 149-167, (1998) · Zbl 0934.03069
[5] Ciucci, D.; Dubois, D., A map of dependencies among three-valued logics, Inf. Sci., 250, 162-177, (2013) · Zbl 1321.03037
[6] Cornelis, C.; Deschrijver, G.; Kerre, E. E., Advances and challenges in interval-valued fuzzy logic, Fuzzy Sets Syst., 157, 622-627, (2006) · Zbl 1098.03034
[7] X. Deng, Y. Yao, Decision-theoretic three-way approximations of fuzzy sets, Inf. Sci. (http://dx.doi.org/10.1016/j.ins.2014.04.022). · Zbl 1354.03073
[8] Du, W. S.; Hu, B. Q., Approximate distribution reducts in inconsistent interval-valued ordered decision tables, Inf. Sci., 271, 93-114, (2014) · Zbl 1341.68250
[9] Dubois, D.; Prade, H., Rough fuzzy sets and fuzzy rough sets, Int. J. General Syst., 17, 191-209, (1990) · Zbl 0715.04006
[10] Fan, T. F.; Liau, C. J.; Liu, D. R., Dominance-based fuzzy rough set analysis of uncertain and possibilistic data tables, Int. J. Approx. Reason., 52, 1283-1297, (2011) · Zbl 1242.68325
[11] Goguen, J. A., L-fuzzy sets, J. Math. Anal. Appl., 18, 145-174, (1967) · Zbl 0145.24404
[12] Gong, Z.; Sun, B.; Chen, D., Rough set theory for the interval-valued fuzzy information systems, Inf. Sci., 178, 1968-1985, (2008) · Zbl 1138.68564
[13] Herbert, J. P.; Yao, J. T., Game-theoretic rough sets, Fundam. Inf., 108, 267-286, (2011) · Zbl 1243.91016
[14] Hu, B. Q.; Wang, C. Y., On type-2 fuzzy relations and interval-valued type-2 fuzzy sets, Fuzzy Sets Syst., 236, 1-32, (2014) · Zbl 1315.03095
[15] Hu, B. Q.; Wong, H., Generalized interval-valued fuzzy rough sets based on interval-valued fuzzy logical operators, Int. J. Fuzzy Syst., 15, 4, 381-391, (2013)
[16] Hu, Q.; Yu, D.; Xie, Z.; Liu, J., Fuzzy probabilistic approximation spaces and their information measures, IEEE Trans. Fuzzy Syst., 14, 2, 191-201, (2006)
[17] Jia, X.; Tang, Z.; Liao, W.; Shang, L., On an optimization representation of decision-theoretic rough set model, Int. J. Approx. Reason., 55, 156-166, (2014) · Zbl 1316.68179
[18] Katzberg, J. D.; Ziarko, W., Variable precision rough sets with asymmetric bounds, (Ziarko, W., Rough Sets, Fuzzy Sets and Knowledge Discovery, (1994), Springer London), 167-177 · Zbl 0819.68041
[19] Li, T.-J.; Yang, X.-P., An axiomatic characterization of probabilistic rough sets, Int. J. Approx. Reason., 55, 130-141, (2014) · Zbl 1316.68182
[20] D. Liang, D. Liu, Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets, Inf. Sci. (http://dx.doi.org/10.1016/j.ins.2014.02.054).
[21] Li, H. X.; Zhou, X. Z., Risk decision making based on decision-theoretic rough set: a three-way view decision model, Int. J. Comput. Intell. Syst., 4, 1-11, (2011)
[22] Liang, D.; Liu, D.; Pedrycz, W.; Hu, P., Triangular fuzzy decision-theoretic rough sets, Int. J. Approx. Reason., 54, 1087-1106, (2013) · Zbl 1316.68183
[23] Lin, G.; Liang, J.; Qian, Y., Multigranulation rough sets: from partition to covering, Inf. Sci., 241, 101-118, (2013) · Zbl 1320.68191
[24] Lin, G.; Qian, Y.; Li, J., NMGRS: neighborhood-based multigranulation rough sets, Int. J. Approx. Reason., 53, 1080-1093, (2012) · Zbl 1264.68176
[25] Liu, G., Generalized rough sets over fuzzy lattices, Inf. Sci., 178, 1651-1662, (2008) · Zbl 1136.03328
[26] Liu, D.; Li, T.; Li, H., A multiple-category classification approach with decision-theoretic rough sets, Fundam. Inf., 115, 2-3, 173-188, (2012) · Zbl 1248.68492
[27] Liu, D.; Li, T.; Ruan, D., Probabilistic model criteria with decision-theoretic rough sets, Inf. Sci., 181, 3709-3722, (2011)
[28] Liu, D.; Yao, Y. Y.; Li, T. R., Three-way investment decisions with decision-theoretic rough sets, Int. J. Comput. Intell. Syst., 4, 66-74, (2011)
[29] X. Ma, G. Wang, H. Yu, T. Li, Decision region distribution preservation reduction in decision-theoretic rough set model, Inf. Sci. (http://dx.doi.org/10.1016/j.ins.2014.03.078). · Zbl 1354.68264
[30] Miranda, E.; Couso, I.; Gil, P., Random sets as imprecise random variables, J. Math. Anal. Appl., 307, 32-47, (2005) · Zbl 1077.60011
[31] Molchanov, I., Theory of random sets, (2005), Springer · Zbl 1109.60001
[32] Nguyen, H. T., Fuzzy and random sets, Fuzzy Sets Syst., 156, 349-356, (2005) · Zbl 1083.68126
[33] Nguyen, H. T., An introduction to random sets, (2006), Chapman & Hall, CRC London, Boca Raton, FL · Zbl 1100.60001
[34] Pawlak, Z., Rough sets, Int. J. Comput. Inf. Sci., 11, 341-356, (1982) · Zbl 0501.68053
[35] Pawlak, Z., Rough sets: theoretical aspects of reasoning about data, (1991), Kluwer Academic Publishers Dordrecht · Zbl 0758.68054
[36] Pedrycz, W., Shadowed sets: representing and processing fuzzy sets, IEEE Trans. Syst. Man Cybern., Part B: Cybern., 28, 103-109, (1998)
[37] Pedrycz, W., From fuzzy sets to shadowed sets: interpretation and computing, Int. J. Intell. Syst., 24, 48-61, (2009) · Zbl 1216.03061
[38] Qian, Y.; Li, S.; Liang, J.; Shi, Z.; Wang, F., Pessimistic rough set based decisions: a multigranulation fusion strategy, Inf. Sci., 264, 196-210, (2014) · Zbl 1335.68270
[39] Y.H. Qian, J.Y. Liang, Rough set method based on multi-granulations, in: Proceeding of 5th IEEE Conference on Cognitive Information, vol. 1, 2006, pp. 297-304.
[40] Qian, Y. H.; Liang, J. Y.; Yao, Y. Y.; Dang, C. Y., MGRS: a multi-granulation rough set, Inf. Sci., 180, 949-970, (2010) · Zbl 1185.68695
[41] Qian, Y.; Zhang, H.; Sang, Y.; Liang, J., Multigranulation decision-theoretic rough sets, Int. J. Approx. Reason., 55, 225-237, (2014) · Zbl 1316.68190
[42] Slezak, D.; Ziarko, W., The investigation of the Bayesian rough set model, Int. J. Approx. Reason., 40, 81-91, (2005) · Zbl 1099.68089
[43] Sun, B.; Gong, Z.; Chen, D., Fuzzy rough set theory for the interval-valued fuzzy information systems, Inf. Sci., 178, 2794-2815, (2008) · Zbl 1149.68434
[44] Yager, R. R., Level sets and the extension principle for interval valued fuzzy sets and its application to uncertainty measures, Inf. Sci., 178, 3565-3576, (2008) · Zbl 1154.68530
[45] Yang, H.-L.; Liao, X.; Wang, S.; Wang, J., Fuzzy probabilistic rough set model on two universes and its applications, Int. J. Approx. Reason., 54, 1410-1420, (2013) · Zbl 1316.03035
[46] Yang, X. P.; Yao, J. T., Modelling multi-agent three-way decisions with decision-theoretic rough sets, Fundam. Inf., 115, 157-171, (2012) · Zbl 1248.68505
[47] Y.Y. Yao, Interval-set algebra for qualitative knowledge representation, in: Proceedings of the 5th International Conference on Computing and Information, Sudbury, Canada, 1993, pp. 370-374.
[48] Yao, Y. Y., Two views of the theory of rough sets in finite universes, Int. J. Approx. Reason., 15, 4, 291-317, (1996) · Zbl 0935.03063
[49] Y.Y. Yao, Interval sets and interval-set algebras, in: Proceedings of the 8th IEEE International Conference on Cognitive Informatics, 2009, pp. 307-314.
[50] Y.Y. Yao, Three-way decision: an interpretation of rules in rough set theory, in: P. Wen, Y. Li, L. Polkowski, Y. Yao, H. Tsumoto, G. Wang (Eds.), Proceeding of 4th International Conference on Rough Sets and Knowledge Technology, LNAI, vol. 5589, 2009, pp. 642-649.
[51] Y.Y. Yao, An outline of a theory of three-way decisions, in: J. Yao, Y. Yang, R. Slowinski, S. Greco, H. Li, S. Mitra, L. Polkowski (Eds.), Proceedings of the 8th International RSCTC Conference, LNCS (LNAI), vol. 7413, 2012, pp. 1-17. · Zbl 1404.68177
[52] Yao, Y. Y., Decision-theoretic rough set models, Rough Sets Knowl. Technol., Lect. Notes Comput. Sci., 4481, 1-12, (2007)
[53] Yao, Y. Y., Probabilistic approaches to rough sets, Expert Syst., 20, 287-297, (2003)
[54] Yao, Y. Y., Probabilistic rough set approximations, Int. J. Approx. Reason., 49, 255-271, (2008) · Zbl 1191.68702
[55] Yao, Y. Y., Three-way decisions with probabilistic rough sets, Inf. Sci., 180, 341-353, (2010)
[56] Yao, Y. Y., The superiority of three-way decisions in probabilistic rough set models, Inf. Sci., 181, 1080-1096, (2011) · Zbl 1211.68442
[57] Yao, Y. Y.; Wong, S. K.M., A decision theoretic framework for approximating concepts, Int. J. Man-Mach. Stud., 37, 793-809, (1992)
[58] Yao, Y. Y.; Wong, S. K.M.; Lingras, P., A decision-theoretic rough set model, (Ras, Z. W.; Zemankova, M.; Emrich, M. L., Methodologies for Intelligent Systems, vol. 5, (1990), North-Holland New York), 17-24
[59] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 338-353, (1965) · Zbl 0139.24606
[60] Zadeh, L. A.; Zadeh, L. A.; Zadeh, L. A., The concept of a linguistic variable and its applications in approximate reasoning (I)-(III), Inf. Sci., Inf. Sci., Inf. Sci., 9, 43-80, (1975) · Zbl 0404.68075
[61] Zhang, H.; Zhou, J.; Miao, D.; Gao, C., Bayesian rough set model: a further investigation, Int. J. Approx. Reason., 53, 541-557, (2012) · Zbl 1246.68236
[62] Ziarko, W., Variable precision rough sets model, J. Comput. Syst. Sci., 46, 39-59, (1993) · Zbl 0764.68162
[63] Ziarko, W., Probabilistic approach to rough sets, Int. J. Approx. Reason., 49, 272-284, (2008) · Zbl 1191.68705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.