×

zbMATH — the first resource for mathematics

Anonymous spatial encryption under affine space delegation functionality with full security. (English) Zbl 1354.94054
Summary: Anonymous encryption provides the decrypter’s identity privacy preservation as well as plaintext confidentiality. Spatial encryption, which is a kind of functional encryption, provides a generalized framework for special property encryption schemes such as broadcast encryption, predicate encryption, forward secure encryption, (hierarchical) identity-based encryption, delegatable attribute-based encryption etc. In this paper, we propose an anonymous spatial encryption scheme that deploys an affine subspace delegation mechanism. Our proposed scheme captures the message confidentiality, recipient anonymity, adaptive security, partial-order delegation and short ciphertext, simultaneously. To the best of our knowledge, the proposed scheme is the first anonymous spatial encryption that provides the anonymity property in adaptive security model, whose construction is based on a dual system encryption mechanism in bilinear composite-order groups. We also give a conversion construction to move into a prime-order setting with canceling property, whose security is based on the Decision Linear Problem. Finally, we provide a transformation methodology to obtain a CCA-secure scheme that combines a one-time signature, delegation functionality and the CPA-secure scheme.

MSC:
94A60 Cryptography
Software:
PBC Library
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Attrapadung, N.; Libert, B., Functional encryption for inner product: achieving constant-size ciphertexts with adaptive security or support for negation, (PKC 2010, LNCS, vol. 6056, (2010), Springer), 384-402 · Zbl 1281.94013
[2] Bellare, M.; Boldyreva, A.; Desai, A.; Pointcheval, D., Key-privacy in public-key encryption, (ASIACRYPT 2001, LNCS, vol. 2248, (2001), Springer), 566-582 · Zbl 1064.94553
[3] Boneh, D.; Boyen, X.; Goh, E. J., Hierarchical identity based encryption with constant size ciphertext, (EUROCRYPT 2005, LNCS, vol. 3494, (2005), Springer), 440-456 · Zbl 1137.94340
[4] Boneh, D.; Goh, E.; Nissim, K., Evaluating 2-DNF formulas on ciphertexts, (TCC 2005, LNCS, vol. 3378, (2005), Springer), 325-341 · Zbl 1079.94534
[5] Boneh, D.; Hamburg, M., Generalized identity based and boradcast encryption schemes, (ASIACRYPT 2008, LNCS, vol. 5350, (2008), Springer), 455-470 · Zbl 1206.94054
[6] Boneh, D.; Rubin, K.; Silverberg, A., Finding composite order ordinary elliptic curves using the cockscpinch method, J. Number Theory, 131, 832-841, (2011) · Zbl 1217.11061
[7] Boneh, D.; Sahai, A.; Waters, B., Functional encryption: definitions and challenges, (TCC 2011, LNCS, vol. 6597, (2011), Springer), 253-273 · Zbl 1295.94027
[8] Boyen, X.; Waters, B., Anonymous hierarchical identity-based encryption without random oracles, (CRYPTO 2006, LNCS, vol. 4117, (2006), Springer), 290-307 · Zbl 1161.94390
[9] Caro, A. D.; Iovino, V.; Persiano, G., Fully secure anonymous hibe and secret-key anonymous ibe with short ciphertexts, (Pairing 2010, LNCS, vol. 6487, (2010), Springer), 347-366 · Zbl 1290.94061
[10] Caro, A. D.; Iovino, V.; Jain, A.; O’Neill, A., On the achievability of simulation-based security for functional encryption, (CRYPTO 2013, LNCS, vol. 8043, (2013), Springer), 519-543 · Zbl 1311.94077
[11] Chen, J.; Lim, H. W.; Ling, S.; Wang, H., The relation and transformation between hierarchical inner product encryption and spatial encryption, Designs, Codes and Cryptography, (2012)
[12] Ducas, L., Anonymity from asymmetry: new constructions for anonymous hibe, (CT-RSA 2010, LNCS, vol. 5985, (2010), Springer), 148-164 · Zbl 1272.94027
[13] Freeman, D. M., Converting pairing-based cryptosystems from composite-order groups to prime-order groups, (EURICRYPT 2010, LNCS, vol. 6110, (2010), Springer), 41-61 · Zbl 1279.94074
[14] Gentry, C.; Halevi, S., Hierarchical identity based encryption with polynomially many levels, (TCC 2009, LNCS, vol. 5444, (2009), Springer), 437-456 · Zbl 1213.94102
[15] Goyal, V.; Pandey, O.; Sahai, A.; Waters, B., Attribute-based encryption for fine-grained access control of encrypted data, (ACM-CCS, (2006), ACM), 89-98
[16] Lewko, A., Tools for simulating features of composite order bilinear groups in the prime order setting, (EUROCRYPT 2012, LNCS, vol. 7237, (2012), Springer), 318-335 · Zbl 1297.94086
[17] A. Lewko, S. Meiklejohn, A profitable sub-prime loan: obtaining the advantages of composite-order in prime-order bilinear groups, Cryptology ePrint Archive: Report 2013/300, 2013. · Zbl 1345.94073
[18] Lewko, A.; Okamoto, T.; Sahai, A.; Tkakshima, K.; Waters, B., Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption, (EUROCRYPT 2010, LNCS, vol. 6110, (2010), Springer), 62-91 · Zbl 1279.94095
[19] A. Lewko, A. Sahai, B. Waters, Revocation system with very small private keys, in: SSP 2010, 2010, pp. 112-120.
[20] Lewko, A.; Waters, B., New techniques for dual system encryption and fully secure hibe with short ciphertexts, (TCC 2010, LNCS, vol. 5978, (2010), Springer), 455-479 · Zbl 1274.94092
[21] Lewko, A.; Waters, B., Unbounded hibe and attribute-based encryption, (EUROCRYPT 2011, LNCS, vol. 6632, (2011), Springer), 547-567 · Zbl 1290.94105
[22] A. Lewko, B. Waters, Why proving HIBE systems secure is difficult, EUROCRYPT 2014, LNCS, Cryptology ePrint Archive: Report 2013/068, 2013. · Zbl 1326.94109
[23] Lewko, A.; Waters, B., New proof methods for attribute-based encryption: achieving full security through selective techniques, (CRYPTO 2012, LNCS, vol. 7417, (2012), Springer), 180-198 · Zbl 1296.94128
[24] Meiklejohn, S.; Shacham, H.; Freeman, D., Limitations on transformations from composite-order to prime-order groups: the case of round-optimal blind signatures, (ASIACRYPT 2010, LNCS, vol. 6477, (2010), Springer), 519-538 · Zbl 1294.94064
[25] Moriyama, D.; Doi, H., A fully secure spatial encryption scheme, IEICE Trans. Fundam., E94-A, 1, 28-35, (2011)
[26] A. O’Neill, Definitional issues in functional encryption, Cryptology ePrint Archive, Report 2010/556, 2010.
[27] Park, J. H.; Lee, D. H., Anonymous hibe: compact construction over prime-order groups, IEEE Trans. Inform. Theory, 59, 4, 2531-2541, (2013) · Zbl 1364.94563
[28] Seo, J. H.; Cheon, J. H., Beyond the limitation of prime-order bilinear groups, and round optimal blind signatures, (TCC 2012, LNCS, vol. 7194, (2012), Springer), 133-150 · Zbl 1303.94103
[29] Seo, J. H.; Kobayashi, T.; Ohkubo, M.; Suzuki, K., Anonymous hierarchical identity-based encryption with constant size ciphertexts, (PKC 2009, LNCS, vol. 5443, (2009), Springer), 215-234 · Zbl 1227.94064
[30] Shen, E.; Shi, E.; Waters, B., Predicate privacy in encryption systems, (TCC 2009, LNCS, vol. 5444, (2009), Springer), 457-473 · Zbl 1213.94133
[31] Shi, E.; Waters, B., Delegating capabilities in predicate encryption systems, (35rd Automata, Language and Programming, LNCS, vol. 5126, (2008), Springer), 560-578 · Zbl 1155.94385
[32] Waters, B., Dual system encryption: realizing fully secure ibe and hibe under simple assumptions, (CRYPTO 2009, LNCS, vol. 5677, (2009), Springer), 619-636 · Zbl 1252.94101
[33] Yamada, S.; Attrapadung, N.; Hanaoka, G.; Kunihiro, N., Generic construction for chosen-ciphertext secure attribute based encryption, (PKC 2011, LNCS, vol. 6571, (2011), Springer), 71-89 · Zbl 1291.94170
[34] Zhang, M.; Takagi, T., Geoenc: geometric area based keys and policies in functional encryption systems, (ACISP 2011, LNCS, vol. 6812, (2011), Springer), 241-258 · Zbl 1295.94163
[35] Zhang, Y.; Xue, C. J.; Wong, D. S.; Mamoulis, N.; Yiu, S. M., Acceleration of composite order bilinear pairing on graphics hardware, (ICICS 2012, LNCS, vol. 7618, (2012), Springer), 341-348
[36] Zhou, M.; Cao, Z., Spatial encryption under simple assumption, (ProvSection 2009, LNCS, vol. 588, (2009), Springer), 19-31 · Zbl 1267.94111
[37] PBC Library, The pairing-based cryptography library. crypto.stanford. edu/pbc/, 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.