×

Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. (English) Zbl 1354.92023

Summary: This is an extensive overview of the core and special space-time and arbitrary Lagrangian-Eulerian (ALE) techniques developed by the authors’ research teams for patient-specific cardiovascular fluid-structure interaction (FSI) modeling. The core techniques are the ALE-based variational multiscale (ALE-VMS) method, the Deforming-Spatial-Domain/Stabilized Space-Time formulation, and the stabilized space-time FSI technique. The special techniques include methods for calculating an estimated zero-pressure arterial geometry, prestressing of the blood vessel wall, a special mapping technique for specifying the velocity profile at an inflow boundary with non-circular shape, techniques for using variable arterial wall thickness, mesh generation techniques for building layers of refined fluid mechanics mesh near the arterial walls, a recipe for pre-FSI computations that improve the convergence of the FSI computations, the Sequentially-Coupled Arterial FSI technique and its multiscale versions, techniques for the projection of fluid-structure interface stresses, calculation of the wall shear stress and oscillatory shear index, arterial-surface extraction and boundary condition techniques, and a scaling technique for specifying a more realistic volumetric flow rate. With results from earlier computations, we show how these core and special FSI techniques work in patient-specific cardiovascular simulations.

MSC:

92C35 Physiological flow
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Z05 Physiological flows
92-08 Computational methods for problems pertaining to biology
92C50 Medical applications (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Humphrey J (2002) Cardiovascular solid mechanics, cells, tissues, and organs. Springer, New York
[2] Holzapfel G (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester · Zbl 0980.74001
[3] Holzapfel, G; Ogden, R, Constitutive modelling of arteries, Proc R Soc A, 466, 1551-1596, (2010) · Zbl 1197.74075
[4] Tezduyar, TE; Sathe, S; Keedy, R; Stein, K, Space-time finite element techniques for computation of fluid-structure interactions, Comput Methods Appl Mech Eng, 195, 2002-2027, (2006) · Zbl 1118.74052
[5] Tezduyar, TE; Sathe, S; Stein, K, Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations, Comput Methods Appl Mech Eng, 195, 5743-5753, (2006) · Zbl 1123.76035
[6] Tezduyar, TE; Sathe, S, Modeling of fluid-structure interactions with the space-time finite elements: solution techniques, Int J Numer Methods Fluids, 54, 855-900, (2007) · Zbl 1144.74044
[7] Förster, C; Wall, W; Ramm, E, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput Methods Appl Mech Eng, 196, 1278-1293, (2007) · Zbl 1173.74418
[8] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Influence of wall elasticity on image-based blood flow simulation, Jpn Soc Mech Eng J Ser A, 70, 1224-1231, (2004)
[9] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation, Comput Methods Appl Mech Eng, 195, 1885-1895, (2006) · Zbl 1178.76241
[10] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Influence of wall elasticity in patient-specific hemodynamic simulations, Comput Fluids, 36, 160-168, (2007) · Zbl 1113.76105
[11] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling, Comput Mech, 43, 151-159, (2008) · Zbl 1169.74032
[12] Bazilevs, Y; Hsu, M-C; Zhang, Y; Wang, W; Kvamsdal, T; Hentschel, S; Isaksen, J, Computational fluid-structure interaction: methods and application to cerebral aneurysms, Biomech Model Mechanobiol, 9, 481-498, (2010)
[13] Bazilevs, Y; Hsu, M-C; Benson, D; Sankaran, S; Marsden, A, Computational fluid-structure interaction: methods and application to a total cavopulmonary connection, Comput Mech, 45, 77-89, (2009) · Zbl 1398.92056
[14] Bazilevs, Y; Alamo, JC; Humphrey, JD, From imaging to prediction: emerging non-invasive methods in pediatric cardiology, Prog Pediatr Cardiol, 30, 81-89, (2010)
[15] Figueroa, C; Baek, S; Taylor, C; Humphrey, J, A computational framework for fluid-solid-growth modeling in cardiovascular simulations, Comput Methods Appl Mech Eng, 199, 3583-3602, (2009) · Zbl 1229.74097
[16] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures, Comput Mech, 38, 482-490, (2006) · Zbl 1160.76061
[17] Bazilevs, Y; Calo, VM; Zhang, Y; Hughes, TJR, Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput Mech, 38, 310-322, (2006) · Zbl 1161.74020
[18] Tezduyar, TE; Sathe, S; Cragin, T; Nanna, B; Conklin, BS; Pausewang, J; Schwaab, M, Modeling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics, Int J Numer Methods Fluids, 54, 901-922, (2007) · Zbl 1276.76043
[19] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape, Int J Numer Methods Fluids, 54, 995-1009, (2007) · Zbl 1317.76107
[20] Bazilevs, Y; Calo, VM; Tezduyar, TE; Hughes, TJR, YZ\(β\) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery, Int J Numer Methods Fluids, 54, 593-608, (2007) · Zbl 1207.76049
[21] Tezduyar, TE; Sathe, S; Schwaab, M; Conklin, BS, Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique, Int J Numer Methods Fluids, 57, 601-629, (2008) · Zbl 1230.76054
[22] Bazilevs, Y; Calo, VM; Hughes, TJR; Zhang, Y, Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37, (2008) · Zbl 1169.74015
[23] Isaksen, JG; Bazilevs, Y; Kvamsdal, T; Zhang, Y; Kaspersen, JH; Waterloo, K; Romner, B; Ingebrigtsen, T, Determination of wall tension in cerebral artery aneurysms by numerical simulation, Stroke, 39, 3172-3178, (2008)
[24] Maynard, JP; Nithiarasu, P, A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method, Commun Numer Methods Eng, 24, 367-417, (2008) · Zbl 1137.92009
[25] Tezduyar, TE; Schwaab, M; Sathe, S, Sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique, Comput Methods Appl Mech Eng, 198, 3524-3533, (2009) · Zbl 1229.74100
[26] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes, Comput Methods Appl Mech Eng, 198, 3613-3621, (2009) · Zbl 1229.74101
[27] Bazilevs, Y; Gohean, JR; Hughes, TJR; Moser, RD; Zhang, Y, Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device, Comput Methods Appl Mech Eng, 198, 3534-3550, (2009) · Zbl 1229.74096
[28] Takizawa, K; Christopher, J; Tezduyar, TE; Sathe, S, Space-time finite element computation of arterial fluid-structure interactions with patient-specific data, Int J Numer Methods Biomed Eng, 26, 101-116, (2010) · Zbl 1180.92023
[29] Tezduyar, TE; Takizawa, K; Moorman, C; Wright, S; Christopher, J, Multiscale sequentially-coupled arterial FSI technique, Comput Mech, 46, 17-29, (2010) · Zbl 1261.92010
[30] Takizawa, K; Moorman, C; Wright, S; Christopher, J; Tezduyar, TE, Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions, Comput Mech, 46, 31-41, (2010) · Zbl 1301.92019
[31] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Influence of wall thickness on fluid-structure interaction computations of cerebral aneurysms, Int J Numer Methods Biomed Eng, 26, 336-347, (2010) · Zbl 1183.92050
[32] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Role of 0D peripheral vasculature model in fluid-structure interaction modeling of aneurysms, Comput Mech, 46, 43-52, (2010) · Zbl 1301.92020
[33] Bazilevs, Y; Hsu, M-C; Zhang, Y; Wang, W; Liang, X; Kvamsdal, T; Brekken, R; Isaksen, J, A fully-coupled fluid-structure interaction simulation of cerebral aneurysms, Comput Mech, 46, 3-16, (2010) · Zbl 1301.92014
[34] Sugiyama, K; Ii, S; Takeuchi, S; Takagi, S; Matsumoto, Y, Full eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow, Comput Mech, 46, 147-157, (2010) · Zbl 1301.76078
[35] Mut, F; Aubry, R; Lohner, R; Cebral, JR, Fast numerical solutions of patient-specific blood flows in 3D arterial systems, Int J Numer Methods Biomed Eng, 26, 73-85, (2010) · Zbl 1180.92022
[36] Bevan, RLT; Nithiarasu, P; Loon, RV; Sazanov, I; Luckraz, H; Garnham, A, Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation, Int J Numer Methods Fluids, (2010) · Zbl 1203.92034
[37] Chitra, K; Sundararajan, T; Vengadesan, S; Nithiarasu, P, Non-Newtonian blood flow study in a model cavopulmonary vascular system, Int J Numer Methods Fluids, (2010) · Zbl 1190.76168
[38] Cebral, JR; Mut, F; Sforza, D; Lohner, R; Scrivano, E; Lylyk, P; Putnam, C, Clinical application of image-based CFD for cerebral aneurysms, Int J Numer Methods Biomed Eng, (2010) · Zbl 1219.92035
[39] Takizawa, K; Moorman, C; Wright, S; Purdue, J; McPhail, T; Chen, PR; Warren, J; Tezduyar, TE, Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms, Int J Numer Methods Fluids, 65, 308-323, (2011) · Zbl 1203.92044
[40] Manguoglu, M; Takizawa, K; Sameh, AH; Tezduyar, TE, Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement, Int J Numer Methods Fluids, 65, 135-149, (2011) · Zbl 1427.76285
[41] Torii, R; Oshima, M; Kobayashi, T; Takagi, K; Tezduyar, TE, Influencing factors in image-based fluid-structure interaction computation of cerebral aneurysms, Int J Numer Methods Fluids, 65, 324-340, (2011) · Zbl 1203.92045
[42] Tezduyar, TE; Takizawa, K; Brummer, T; Chen, PR, Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms, Int J Numer Methods Biomed Eng, 27, 1665-1710, (2011) · Zbl 1244.92036
[43] Hsu, M-C; Bazilevs, Y, Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations, Finite Elem Anal Des, 47, 593-599, (2011)
[44] Takizawa, K; Brummer, T; Tezduyar, TE; Chen, PR, A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms, J Appl Mech, 79, (2012)
[45] Moghadam, ME; Bazilevs, Y; Hsia, T-Y; Vignon-Clementel, IE; Marsden, AL; M. of Congenital Hearts Alliance (MOCHA), A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Comput Mech, 48, 277-291, (2011) · Zbl 1398.76102
[46] Hughes, TJR; Liu, WK; Zimmermann, TK, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput Methods Appl Mech Eng, 29, 329-349, (1981) · Zbl 0482.76039
[47] Tezduyar, T; Aliabadi, S; Behr, M; Johnson, A; Mittal, S, Parallel finite-element computation of 3D flows, Computer, 26, 27-36, (1993) · Zbl 0875.76267
[48] Behr, M; Johnson, A; Kennedy, J; Mittal, S; Tezduyar, T, Computation of incompressible flows with implicit finite element implementations on the connection machine, Comput Methods Appl Mech Eng, 108, 99-118, (1993) · Zbl 0784.76046
[49] Tezduyar, TE; Aliabadi, SK; Behr, M; Mittal, S, Massively parallel finite element simulation of compressible and incompressible flows, Comput Methods Appl Mech Eng, 119, 157-177, (1994) · Zbl 0848.76040
[50] Mittal, S; Tezduyar, TE, Massively parallel finite element computation of incompressible flows involving fluid-body interactions, Comput Methods Appl Mech Eng, 112, 253-282, (1994) · Zbl 0846.76048
[51] Johnson, AA; Tezduyar, TE, Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput Methods Appl Mech Eng, 119, 73-94, (1994) · Zbl 0848.76036
[52] Mittal, S; Tezduyar, TE, Parallel finite element simulation of 3D incompressible flows: fluid-structure interactions, Int J Numer Methods Fluids, 21, 933-953, (1995) · Zbl 0873.76047
[53] Aliabadi, SK; Tezduyar, TE, Parallel fluid dynamics computations in aerospace applications, Int J Numer Methods Fluids, 21, 783-805, (1995) · Zbl 0862.76033
[54] Tezduyar, T; Aliabadi, S; Behr, M; Johnson, A; Kalro, V; Litke, M, Flow simulation and high performance computing, Comput Mech, 18, 397-412, (1996) · Zbl 0893.76046
[55] Johnson, AA; Tezduyar, TE, Simulation of multiple spheres falling in a liquid-filled tube, Comput Methods Appl Mech Eng, 134, 351-373, (1996) · Zbl 0895.76046
[56] Johnson, AA; Tezduyar, TE, Parallel computation of incompressible flows with complex geometries, Int J Numer Methods Fluids, 24, 1321-1340, (1997) · Zbl 0882.76044
[57] Johnson, AA; Tezduyar, TE, Advanced mesh generation and update methods for 3D flow simulations, Comput Mech, 23, 130-143, (1999) · Zbl 0949.76049
[58] Behr, M; Tezduyar, T, The shear-slip mesh update method, Comput Methods Appl Mech Eng, 174, 261-274, (1999) · Zbl 0959.76037
[59] Kalro, V; Tezduyar, TE, A parallel 3D computational method for fluid-structure interactions in parachute systems, Comput Methods Appl Mech Eng, 190, 321-332, (2000) · Zbl 0993.76044
[60] Stein, K; Benney, R; Kalro, V; Tezduyar, TE; Leonard, J; Accorsi, M, Parachute fluid-structure interactions: 3-D computation, Comput Methods Appl Mech Eng, 190, 373-386, (2000) · Zbl 0973.76055
[61] Tezduyar, TE, Finite element methods for flow problems with moving boundaries and interfaces, Arch Comput Methods Eng, 8, 83-130, (2001) · Zbl 1039.76037
[62] Tezduyar, T; Osawa, Y, Fluid-structure interactions of a parachute crossing the far wake of an aircraft, Comput Methods Appl Mech Eng, 191, 717-726, (2001) · Zbl 1113.76407
[63] Stein, K; Benney, R; Tezduyar, T; Potvin, J, Fluid-structure interactions of a cross parachute: numerical simulation, Comput Methods Appl Mech Eng, 191, 673-687, (2001) · Zbl 0999.76085
[64] Ohayon, R, Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems, Comput Methods Appl Mech Eng, 190, 3009-3019, (2001) · Zbl 0971.74032
[65] Behr, M; Tezduyar, T, Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components, Comput Methods Appl Mech Eng, 190, 3189-3200, (2001) · Zbl 1012.76042
[66] Stein, K; Tezduyar, T; Benney, R, Mesh moving techniques for fluid-structure interactions with large displacements, J Appl Mech, 70, 58-63, (2003) · Zbl 1110.74689
[67] Stein, K; Tezduyar, TE; Benney, R, Automatic mesh update with the solid-extension mesh moving technique, Comput Methods Appl Mech Eng, 193, 2019-2032, (2004) · Zbl 1067.74587
[68] Brummelen, EH; Borst, R, On the nonnormality of subiteration for a fluid-structure interaction problem, SIAM J Sci Comput, 27, 599-621, (2005) · Zbl 1136.65334
[69] Tezduyar, TE, Finite elements in fluids: stabilized formulations and moving boundaries and interfaces, Comput Fluids, 36, 191-206, (2007) · Zbl 1177.76202
[70] Brenk, M; Bungartz, H-J; Mehl, M; Neckel, T; Bungartz, H-J (ed.); Schafer, M (ed.), Fluid-structure interaction on Cartesian grids: flow simulation and coupling environment, No. 53, 233-269, (2006), Berlin · Zbl 1323.76047
[71] Lohner, R; Cebral, JR; Yang, C; Baum, JD; Mestreau, EL; Soto, O; Bungartz, H-J (ed.); Schafer, M (ed.), Extending the range of applicability of the loose coupling approach for FSI simulations, No. 53, 82-100, (2006), Berlin · Zbl 1323.74091
[72] Bletzinger, K-U; Wuchner, R; Kupzok, A; Bungartz, H-J (ed.); Schafer, M (ed.), Algorithmic treatment of shells and free form-membranes in FSI, No. 53, 336-355, (2006), Berlin · Zbl 1323.74078
[73] Sawada, T; Hisada, T, Fluid-structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method, Comput Fluids, 36, 136-146, (2007) · Zbl 1181.76099
[74] Takizawa, K; Yabe, T; Tsugawa, Y; Tezduyar, TE; Mizoe, H, Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless soroban grids, Comput Mech, 40, 167-183, (2007) · Zbl 1177.76300
[75] Takizawa, K; Tanizawa, K; Yabe, T; Tezduyar, TE, Ship hydrodynamics computations with the CIP method based on adaptive soroban grids, Int J Numer Methods Fluids, 54, 1011-1019, (2007) · Zbl 1375.76153
[76] Yabe, T; Takizawa, K; Tezduyar, TE; Im, H-N, Computation of fluid-solid and fluid-fluid interfaces with the CIP method based on adaptive soroban grids—an overview, Int J Numer Methods Fluids, 54, 841-853, (2007) · Zbl 1375.76154
[77] Manguoglu, M; Sameh, AH; Tezduyar, TE; Sathe, S, A nested iterative scheme for computation of incompressible flows in long domains, Comput Mech, 43, 73-80, (2008) · Zbl 1279.76024
[78] Tezduyar, TE; Sathe, S; Pausewang, J; Schwaab, M; Christopher, J; Crabtree, J, Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods, Comput Mech, 43, 39-49, (2008) · Zbl 1310.74049
[79] Tezduyar, TE; Sathe, S; Pausewang, J; Schwaab, M; Christopher, J; Crabtree, J, Fluid-structure interaction modeling of ringsail parachutes, Comput Mech, 43, 133-142, (2008) · Zbl 1209.74022
[80] Sathe, S; Tezduyar, TE, Modeling of fluid-structure interactions with the space-time finite elements: contact problems, Comput Mech, 43, 51-60, (2008) · Zbl 1297.74129
[81] Dettmer, WG; Peric, D, On the coupling between fluid flow and mesh motion in the modelling of fluid-structure interaction, Comput Mech, 43, 81-90, (2008) · Zbl 1235.74272
[82] Bazilevs, Y; Hughes, TJR, NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput Mech, 43, 143-150, (2008) · Zbl 1171.76043
[83] Heil, M; Hazel, AL; Boyle, J, Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches, Comput Mech, 43, 91-101, (2008) · Zbl 1309.76126
[84] Sternel, DC; Schaefer, M; Heck, M; Yigit, S, Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach, Comput Mech, 43, 103-113, (2008) · Zbl 1234.74053
[85] Mehl, M; Brenk, M; Bungartz, H-J; Daubner, K; Muntean, IL; Neckel, T, An eulerian approach for partitioned fluid-structure simulations on Cartesian grids, Comput Mech, 43, 115-124, (2008) · Zbl 1228.74024
[86] Idelsohn, SR; Marti, J; Souto-Iglesias, A; Onate, E, Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM, Comput Mech, 43, 125-132, (2008) · Zbl 1177.74140
[87] Idelsohn, SR; Marti, J; Limache, A; Onate, E, Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM, Comput Methods Appl Mech Eng, 197, 1762-1776, (2008) · Zbl 1194.74415
[88] Manguoglu, M; Sameh, AH; Saied, F; Tezduyar, TE; Sathe, S, Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows, J Appl Mech, 76, (2009)
[89] Idelsohn, SR; Pin, FD; Rossi, R; Onate, E, Fluid-structure interaction problems with strong added-mass effect, Int J Numer Methods Eng, 80, 1261-1294, (2009) · Zbl 1183.74059
[90] Manguoglu, M; Takizawa, K; Sameh, AH; Tezduyar, TE, Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement, Comput Mech, 46, 83-89, (2010) · Zbl 1301.76087
[91] Mayer, UM; Popp, A; Gerstenberger, A; Wall, WA, 3D fluid-structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach, Comput Mech, 46, 53-67, (2010) · Zbl 1301.74018
[92] Calderer, R; Masud, A, A multiscale stabilized ALE formulation for incompressible flows with moving boundaries, Comput Mech, 46, 185-197, (2010) · Zbl 1301.76057
[93] Tezduyar, TE; Takizawa, K; Moorman, C; Wright, S; Christopher, J, Space-time finite element computation of complex fluid-structure interactions, Int J Numer Methods Fluids, 64, 1201-1218, (2010) · Zbl 1427.76148
[94] Kiendl, J; Bazilevs, Y; Hsu, M-C; Wüchner, R; Bletzinger, K-U, The bending strip method for isogeometric analysis of Kirchhoff-love shell structures comprised of multiple patches, Comput Methods Appl Mech Eng, 199, 2403-2416, (2010) · Zbl 1231.74482
[95] Ryzhakov, PB; Rossi, R; Idelsohn, SR; Onate, E, A monolithic Lagrangian approach for fluid-structure interaction problems, Comput Mech, 46, 883-899, (2010) · Zbl 1344.74016
[96] Bazilevs, Y; Hsu, M-C; Akkerman, I; Wright, S; Takizawa, K; Henicke, B; Spielman, T; Tezduyar, TE, 3D simulation of wind turbine rotors at full scale. part I: geometry modeling and aerodynamics, Int J Numer Methods Fluids, 65, 207-235, (2011) · Zbl 1428.76086
[97] Bazilevs, Y; Hsu, M-C; Kiendl, J; Wüchner, R; Bletzinger, K-U, 3D simulation of wind turbine rotors at full scale. part II: fluid-structure interaction modeling with composite blades, Int J Numer Methods Fluids, 65, 236-253, (2011) · Zbl 1428.76087
[98] Takizawa, K; Moorman, C; Wright, S; Spielman, T; Tezduyar, TE, Fluid-structure interaction modeling and performance analysis of the orion spacecraft parachutes, Int J Numer Methods Fluids, 65, 271-285, (2011) · Zbl 1428.76011
[99] Takizawa, K; Wright, S; Moorman, C; Tezduyar, TE, Fluid-structure interaction modeling of parachute clusters, Int J Numer Methods Fluids, 65, 286-307, (2011) · Zbl 1426.76312
[100] Takizawa, K; Tezduyar, TE, Multiscale space-time fluid-structure interaction techniques, Comput Mech, 48, 247-267, (2011) · Zbl 1398.76128
[101] Takizawa, K; Spielman, T; Tezduyar, TE, Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters, Comput Mech, 48, 345-364, (2011) · Zbl 1398.74095
[102] Takizawa, K; Spielman, T; Moorman, C; Tezduyar, TE, Fluid-structure interaction modeling of spacecraft parachutes for simulation-based design, J Appl Mech, 79, (2012)
[103] Takizawa, K; Henicke, B; Puntel, A; Spielman, T; Tezduyar, TE, Space-time computational techniques for the aerodynamics of flapping wings, J Appl Mech, 79, (2012)
[104] Takizawa, K; Henicke, B; Montes, D; Tezduyar, TE; Hsu, M-C; Bazilevs, Y, Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 647-657, (2011) · Zbl 1334.74032
[105] Sawada, T; Tezuka, A, LLM and X-FEM based interface modeling of fluid-thin structure interactions on a non-interface-fitted mesh, Comput Mech, 48, 319-332, (2011) · Zbl 1398.74090
[106] Manguoglu, M; Takizawa, K; Sameh, AH; Tezduyar, TE, A parallel sparse algorithm targeting arterial fluid mechanics computations, Comput Mech, 48, 377-384, (2011) · Zbl 1398.76115
[107] Onate, E; Celigueta, MA; Idelsohn, SR; Salazar, F; Suarez, B, Possibilities of the particle finite element method for fluid-soil-structure interaction problems, Comput Mech, 48, 307-318, (2011) · Zbl 1398.76120
[108] Takase, S; Kashiyama, K; Tanaka, S; Tezduyar, TE, Space-time SUPG finite element computation of shallow-water flows with moving shorelines, Comput Mech, 48, 293-306, (2011) · Zbl 1398.76126
[109] Nagaoka, S; Nakabayashi, Y; Yagawa, G; Kim, YJ, Accurate fluid-structure interaction computations using elements without mid-side nodes, Comput Mech, 48, 269-276, (2011) · Zbl 1398.76119
[110] Takizawa, K; Tezduyar, TE, Computational methods for parachute fluid-structure interactions, Arch Comput Methods Eng, 19, 125-169, (2012) · Zbl 1354.76113
[111] Gerbeau, J; Vidrascu, M; Frey, P, Fluid-structure interaction in blood flows on geometries based on medical images, Comput Struct, 83, 155-165, (2005)
[112] Fernandez, M; Moubachir, M, A Newton method using exact Jacobians for solving fluid-structure coupling, Comput Struct, 83, 127-142, (2005)
[113] Tezduyar, TE, Stabilized finite element formulations for incompressible flow computations, Adv Appl Mech, 28, 1-44, (1992) · Zbl 0747.76069
[114] Tezduyar, TE; Behr, M; Liou, J, A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests, Comput Methods Appl Mech Eng, 94, 339-351, (1992) · Zbl 0745.76044
[115] Tezduyar, TE; Behr, M; Mittal, S; Liou, J, A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput Methods Appl Mech Eng, 94, 353-371, (1992) · Zbl 0745.76045
[116] Tezduyar, TE, Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Fluids, 43, 555-575, (2003) · Zbl 1032.76605
[117] Brooks, AN; Hughes, TJR, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259, (1982) · Zbl 0497.76041
[118] Tezduyar, TE; Mittal, S; Ray, SE; Shih, R, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput Methods Appl Mech Eng, 95, 221-242, (1992) · Zbl 0756.76048
[119] Hughes, TJR; Franca, LP; Balestra, M, A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput Methods Appl Mech Eng, 59, 85-99, (1986) · Zbl 0622.76077
[120] Hughes, TJR; Hulbert, GM, Space-time finite element methods for elastodynamics: formulations and error estimates, Comput Methods Appl Mech Eng, 66, 339-363, (1988) · Zbl 0616.73063
[121] Tezduyar, TE; Behr, M; Mittal, S; Johnson, AA, Computation of unsteady incompressible flows with the finite element methods—space-time formulations, iterative strategies and massively parallel implementations, 7-24, (1992), New York
[122] Tezduyar, TE; Stein, E (ed.); Borst, RD (ed.); Hughes, TJR (ed.), Finite element methods for fluid dynamics with moving boundaries and interfaces, No. 3, (2004), New York
[123] Tezduyar, TE; Takizawa, K; Christopher, J; Hartmann, S (ed.); Meister, A (ed.); Schaefer, M (ed.); Turek, S (ed.), Multiscale sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique, 231-252, (2009), Kassel
[124] Tezduyar, TE; Cragin, T; Sathe, S; Nanna, B; Onate, E (ed.); Garcia, J (ed.); Bergan, P (ed.); Kvamsdal, T (ed.), FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry, (2007), Barcelona
[125] Tezduyar, TE; Schwaab, M; Sathe, S; Onate, E (ed.); Papadrakakis, M (ed.); Schrefler, B (ed.), Arterial fluid mechanics with the sequentially-coupled arterial FSI technique, (2007), Barcelona
[126] Wells, RE; Merrill, EW, Shear rate dependence of the viscosity of whole blood and plasma, Science, 133, 763-764, (1961)
[127] Simo J, Hughes T (1998) Computational inelasticity. Springer, New York · Zbl 0934.74003
[128] Betsch, P; Gruttmann, F; Stein, E, A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains, Comput Methods Appl Mech Eng, 130, 57-79, (1996) · Zbl 0861.73068
[129] Stuparu, M, Human heart valves. hyperelastic material modeling, (2002), Romania
[130] Bazilevs, Y; Calo, VM; Cottrel, JA; Hughes, TJR; Reali, A; Scovazzi, G, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201, (2007) · Zbl 1169.76352
[131] Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge · Zbl 0628.65098
[132] Hughes, TJR; Tezduyar, TE, Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput Methods Appl Mech Eng, 45, 217-284, (1984) · Zbl 0542.76093
[133] Tezduyar, TE; Park, YJ, Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput Methods Appl Mech Eng, 59, 307-325, (1986) · Zbl 0593.76096
[134] Tezduyar, TE; Osawa, Y, Finite element stabilization parameters computed from element matrices and vectors, Comput Methods Appl Mech Eng, 190, 411-430, (2000) · Zbl 0973.76057
[135] Hughes, T; Scovazzi, G; Franca, L; Stein, E (ed.); Borst, R (ed.); Hughes, T (ed.), Multiscale and stabilized methods, No. 3, (2004), New York
[136] Hughes, TJR, Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Comput Methods Appl Mech Eng, 127, 387-401, (1995) · Zbl 0866.76044
[137] Hughes, TJR; Feijóo, G; Mazzei, L; Quincy, JB, The variational multiscale method—a paradigm for computational mechanics, Comput Methods Appl Mech Eng, 166, 3-24, (1998) · Zbl 1017.65525
[138] Hughes, TJR; Sangalli, G, Variational multiscale analysis: the fine-scale green’s function, projection, optimization, localization, and stabilized methods, SIAM J Numer Anal, 45, 539-557, (2007) · Zbl 1152.65111
[139] Akin, JE; Tezduyar, T; Ungor, M; Mittal, S, Stabilization parameters and smagorinsky turbulence model, J Appl Mech, 70, 2-9, (2003) · Zbl 1110.74311
[140] Akin, JE; Tezduyar, TE, Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements, Comput Methods Appl Mech Eng, 193, 1909-1922, (2004) · Zbl 1067.76557
[141] Catabriga, L; Coutinho, ALGA; Tezduyar, TE, Compressible flow SUPG parameters computed from element matrices, Commun Numer Methods Eng, 21, 465-476, (2005) · Zbl 1329.76161
[142] Tezduyar, TE; Senga, M; Vicker, D, Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(β\) shock-capturing, Comput Mech, 38, 469-481, (2006) · Zbl 1176.76077
[143] Tezduyar, TE; Sathe, S, Enhanced-discretization selective stabilization procedure (EDSSP), Comput Mech, 38, 456-468, (2006) · Zbl 1187.76712
[144] Onate, E; Valls, A; Garcia, J, FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers, Comput Mech, 38, 440-455, (2006) · Zbl 1160.76027
[145] Corsini, A; Rispoli, F; Santoriello, A; Tezduyar, TE, Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation, Comput Mech, 38, 356-364, (2006) · Zbl 1177.76192
[146] Catabriga, L; Coutinho, ALGA; Tezduyar, TE, Compressible flow SUPG parameters computed from degree-of-freedom submatrices, Comput Mech, 38, 334-343, (2006) · Zbl 1176.76061
[147] Rispoli, F; Corsini, A; Tezduyar, TE, Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD), Comput Fluids, 36, 121-126, (2007) · Zbl 1181.76098
[148] Corsini, A; Iossa, C; Rispoli, F; Tezduyar, TE, A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors, Comput Mech, 46, 159-167, (2010) · Zbl 1301.76045
[149] Hsu, M-C; Bazilevs, Y; Calo, VM; Tezduyar, TE; Hughes, TJR, Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput Methods Appl Mech Eng, 199, 828-840, (2010) · Zbl 1406.76028
[150] Corsini, A; Rispoli, F; Tezduyar, TE, Stabilized finite element computation of nox emission in aero-engine combustors, Int J Numer Methods Fluids, 65, 254-270, (2011) · Zbl 1426.76240
[151] Shakib, F; Hughes, TJR; Johan, Z, A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations, Comput Methods Appl Mech Eng, 89, 141-219, (1991)
[152] Lo A (1982) Nonlinear dynamic analysis of cable and membrane structure. Ph.D. thesis, Department of Civil Engineering, Oregon State University
[153] Benney, RJ; Stein, KR; Leonard, JW; Accorsi, ML, Current 3-D structural dynamic finite element modeling capabilities, San Francisco, California
[154] Saad, Y; Schultz, M, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 856-869, (1986) · Zbl 0599.65018
[155] Fujisawa, T; Inaba, M; Yagawa, G, Parallel computing of high-speed compressible flows using a node-based finite element method, Int J Numer Methods Fluids, 58, 481-511, (2003) · Zbl 1032.76594
[156] Tezduyar, TE, Finite elements in fluids: special methods and enhanced solution techniques, Comput Fluids, 36, 207-223, (2007) · Zbl 1177.76203
[157] Johan, Z; Mathur, KK; Johnsson, SL; Hughes, TJR, A case study in parallel computation: viscous flow around an onera M6 wing, Int J Numer Methods Fluids, 21, 877-884, (1995) · Zbl 0875.76256
[158] Tezduyar, TE; Liou, J; Ganjoo, DK, Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations, Comput Struct, 35, 445-472, (1990) · Zbl 0719.76051
[159] Tezduyar, TE; Mittal, S; Shih, R, Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements, Comput Methods Appl Mech Eng, 87, 363-384, (1991) · Zbl 0760.76052
[160] Hilber, HM; Hughes, TJR; Taylor, RL, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Eng Struct Dyn, 5, 283-292, (1977)
[161] Taylor, CA; Hughes, TJR; Zarins, CK, Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis, Ann Biomed Eng, 158, 975-987, (1998)
[162] Green, AE; Naghdi, PM, A derivation of equations for wave propagation in water of variable depth, J Fluid Mech, 78, 237-246, (1976) · Zbl 0351.76014
[163] McPhail, T; Warren, J, An interactive editor for deforming volumetric data, Singapore
[164] Chung, J; Hulbert, G, A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(α\) method, J Appl Mech, 60, 371-375, (1993) · Zbl 0775.73337
[165] Huang, H; Virmani, R; Younis, H; Burke, AP; Kamm, RD; Lee, RT, The impact of calcification on the biomechanical stability of atherosclerotic plaques, Circulation, 103, 1051-1056, (2001)
[166] Womersley, JR, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J Physiol, 127, 553-563, (1955)
[167] Frank O (1899) Die Grundform des arteriellen Pulses. Z Biol 37:483-586
[168] Formaggia, L; Gerbeau, J-F; Nobile, F; Quarteroni, A, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput Methods Appl Mech Eng, 191, 561-582, (2001) · Zbl 1007.74035
[169] Vignon-Clementel, I; Figueroa, C; Jansen, K; Taylor, C, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Comput Methods Appl Mech Eng, 195, 3776-3796, (2006) · Zbl 1175.76098
[170] Tezduyar, TE; Takizawa, K; Christopher, J; Kvamsdal, T (ed.); Pettersen, B (ed.); Bergan, P (ed.); Onate, E (ed.); Garcia, J (ed.), Sequentially-coupled FSI technique, (2009), Barcelona
[171] Tezduyar, TE; Takizawa, K; Christopher, J; Moorman, C; Wright, S; Kvamsdal, T (ed.); Pettersen, B (ed.); Bergan, P (ed.); Onate, E (ed.); Garcia, J (ed.), Interface projection techniques for complex FSI problems, (2009), Barcelona
[172] Jansen, K; Whiting, C; Hulbert, G, A generalized-\(α\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput Methods Appl Mech Eng, 190, 305-319, (1999) · Zbl 0973.76048
[173] Hughes, TJR; Cottrell, JA; Bazilevs, Y, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195, (2005) · Zbl 1151.74419
[174] Zhang, Y; Bazilevs, Y; Goswami, S; Bajaj, C; Hughes, TJR, Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow, Comput Methods Appl Mech Eng, 196, 2943-2959, (2007) · Zbl 1121.76076
[175] Zhang, Y; Wang, W; Liang, X; Bazilevs, Y; Hsu, M-C; Kvamsdal, T; Brekken, R; Isaksen, J, High-fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms, Comput Model Eng Sci, 42, 131-150, (2009)
[176] Fontan, F; Baudet, E, Surgical repair of tricuspid atresia, Thorax, 26, 240-248, (1971)
[177] Petrossian, E; Reddy, VM; Collins, KK; Culbertson, CB; MacDonald, MJ; Lamberti, JJ; Reinhartz, O; Mainwaring, RD; Francis, PD; Malhotra, SP; Gremmels, DB; Suleman, S; Hanley, FL, The extracardiac conduit fontan operation using minimal approach extracorporeal circulation: early and midterm outcomes, J Thorac Cardiovasc Surg, 132, 1054-1063, (2006)
[178] Ensley, A; Ramuzat, A; Healy, T; Chatzimavroudis, G; Lucas, C; Sharma, S; Pettigrew, R; Yoganathan, A, Fluid mechanic assessment of the total cavopulmonary connection using magnetic resonance phase velocity mapping and digital particle image velocimetry, Ann Biomed Eng, 28, 1172-1183, (2000)
[179] Khunatorn, Y; Mahalingam, S; DeGroff, C; Shandas, R, Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study, J Biomech Eng, 124, 364-377, (2002)
[180] Bove, E; Leval, M; Migliavacca, F; Guadagni, G; Dubini, G, Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the norwood procedure for hypoplastic left heart syndrome, J Thorac Cardiovasc Surg, 126, 1040-1047, (2003)
[181] Migliavacca, F; Dubini, G; Bove, E; Leval, M, Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis, J Biomech Eng, 125, 805-813, (2003)
[182] Marsden, A; Bernstein, A; Reddy, V; Shadden, S; Spilker, R; Chan, F; Taylor, C; Feinstein, J, Evaluation of a novel Y-shaped extracardiac fontan baffle using computational fluid dynamics, J Thorac Cardiovasc Surg, 137, 394-403, (2009)
[183] Marsden, A; Vignon-Clementel, I; Chan, F; Feinstein, J; Taylor, C, Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection, Ann Biomed Eng, 35, 250-263, (2007)
[184] Leval, MR; Dubini, G; Migliavacca, F; Jalali, H; Camporini, G; Redington, A; Pietrabissa, R, Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections, J Thorac Cardiovasc Surg, 111, 502-513, (1996)
[185] Dubini, G; Leval, MR; Pietrabissa, R; Montevecchi, FM; Fumero, R, A numerical fluid mechanical study of repaired congenital heart defects: application to the total cavopulmonary connection, J Biomech, 29, 111-121, (1996)
[186] Migliavacca, F; Dubini, G; Pietrabissa, R; Leval, MR, Computational transient simulations with varying degree and shape of pulmonic stenosis in models of the bidirectional cavopulmonary anastomosis, Med Eng Phys, 19, 394-403, (1997)
[187] Sahni, O; Muller, J; Jansen, K; Shephard, M; Taylor, C, Efficient anisotropic adaptive discretization of the cardiovascular system, Comput Methods Appl Mech Eng, 195, 5634-5655, (2006) · Zbl 1125.76046
[188] Shachar, G; Fuhrman, B; Wang, Y; Lucas, R; Lock, J, Rest and exercise hemodynamics after the fontan procedure, Circulation, 65, 1043-1048, (1982)
[189] Giardini, A; Balducci, A; Specchia, S; Gaetano, G; Bonvicini, M; Picchio, FM, Effect of sildenafil on haemodynamic response to exercise capacity in fontan patients, Eur Heart J, 29, 1681-1687, (2008)
[190] Hjortdal, VE; Emmertsen, K; Stenbog, E; Frund, T; Rahbek Schmidt, M; Kromann, O; Sorensen, K; Pedersen, EM, Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study, Circulation, 108, 1227-1231, (2003)
[191] Pedersen, EM; Stenbog, EV; Frund, T; Houlind, K; Kromann, O; Sorensen, KE; Emmertsen, K; Hjortdal, VE, Flow during exercise in the total cavopulmonary connection measured by magnetic resonance velocity mapping, Heart, 87, 554-558, (2002)
[192] Hetzer, R; Jurmann, MJ; Potapov, EV; Hennig, E; Stiller, B; Muller, JH; Weng, Y, Heart assist systems: current status, Hertz, 20, 407, (2002)
[193] Wootton, DM; Ku, DN, Fluid mechanics of vascular systems, diseases, and thrombosis, Annu Rev Biomed Eng, 1, 299, (1999)
[194] Liu, SQ; Zhong, L; Goldman, J, Control of the shape of a thrombus-neointima-like structure by blood shear stress, J Biomech Eng, 124, 30, (2002)
[195] Kar, B; Delgado, RM; Frazier, OH; Gregoric, I; Harting, MT; Wadia, Y; Myers, T; Moser, R; Freund, J, The effect of LVAD aortic outflow-graft placement on hemodynamics and flow, Texas Heart Inst J, 32, 294-298, (2005)
[196] Gohean JR (2007) A closed-loop multi-scale model of the cardiovascular system for evaluation of ventricular devices. Master’s thesis, University of Texas, Austin, May 2007 · Zbl 1181.76099
[197] Calo, V; Brasher, N; Bazilevs, Y; Hughes, T, Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow, Comput Mech, 43, 161-177, (2008) · Zbl 1169.76066
[198] Olufsen MS (1988) Modeling of the arterial system with reference to an anesthesia simulator. Ph.D. thesis, Roskilde University, 1998 · Zbl 0873.76047
[199] Kilner, PJ; Yang, GZ; Mohiaddin, RH; Firmin, DN; Longmore, DB, Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping, Circulation, 88, 2235-2247, (1993)
[200] Glagov, S; Zarins, C; Giddens, DP; Ku, DN, Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries, Arch Pathol Lab Med, 112, 1018-1031, (1988)
[201] Shaaban, AM; Duerinckx, AJ, Wall shear stress and early atherosclerosis: a review, Am J Roentgenol, 174, 1657-1665, (2000)
[202] Levesque, MJ; Nerem, R, The elongation and orientation of cultured endothelial cells in response to shear stress, J Biomech Eng, 107, 341-347, (1985)
[203] Levesque, MJ; Liepsch, D; Moravec, S; Nerem, R, Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta, Arteriosclerosis, 6, 220-229, (1986)
[204] Okano, M; Yoshida, Y, Junction complexes of endothelial cells in atherosclerosis-prone and atherosclerosis-resistant regions on flow dividers of brachiocephalic bifurcations in the rabbit aorta, Biorheology, 31, 155-161, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.