×

A multiscale model of cell mobility: from a kinetic to a hydrodynamic description. (English) Zbl 1354.92010

Summary: This paper concerns a model for tumor cell migration through the surrounding extracellular matrix by considering mass balance phenomena involving the chemical interactions produced on the cell surface. The well-posedness of this model is proven. An asymptotic analysis via a suitable hydrodynamic limit completes the description of the macroscopic behavior.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K55 Nonlinear parabolic equations

Software:

Chemotaxis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J., Multicellular biological growing systems: hyperbolic limits towards macroscopic description, Math. Models Methods Appl. Sci., 17, Suppl., 1675-1692 (2007) · Zbl 1135.92009
[2] Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J., Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods Appl. Sci., 20, 7, 1179-1207 (2010) · Zbl 1402.92065
[3] Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J., Modeling chemotaxis from \(L^2\)-closure moments in kinetic theory of active particles, Discrete Contin. Dyn. Syst. Ser. B, 18, 4, 847-863 (2013) · Zbl 1280.35160
[4] Bellomo, N.; Bellouquid, A.; Nieto, J.; Soler, J., On the multiscale modeling of vehicular traffic: from kinetic to hydrodynamics, Discrete Contin. Dyn. Syst. Ser. B, 19, 7, 1869-1888 (2014) · Zbl 1302.35372
[5] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 9, 1663-1763 (2015) · Zbl 1326.35397
[6] Bellouquid, A.; Calvo, J.; Nieto, J.; Soler, J., Hyperbolic vs parabolic asymptotics in kinetic theory towards fluid dynamic models, SIAM J. Appl. Math., 73, 4, 1327-1346 (2013) · Zbl 1295.35351
[7] Filbet, F.; Laurencot, P.; Perthame, B., Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50, 2, 189-207 (2005) · Zbl 1080.92014
[8] Hillen, T., \(M^5\) mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol., 53, 4, 585-616 (2006) · Zbl 1112.92003
[9] Kelkel, J.; Surulescu, C., A multiscale approach to cell migration in tissue networks, Math. Models Methods Appl. Sci., 22, 3, Article 1150017 pp. (2013), (25 pp.) · Zbl 1241.92041
[10] Maini, P. K., Spatial and spatio-temporal patterns in a cell-haptotaxis model, J. Math. Biol., 27, 507-522 (1989) · Zbl 0716.92004
[11] Mallet, D. G., Mathematical modelling of the role of haptotaxis in tumour growth and invasion (2004), Queensland University of Technology
[12] Othmer, H.; Dunbar, S.; Alt, W., Models of dispersal in biological systems, J. Math. Biol., 26, 263-298 (1988) · Zbl 0713.92018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.