zbMATH — the first resource for mathematics

An embedded mesh method in a multiple material ALE. (English) Zbl 1354.74294
Summary: A new approach for treating the mechanical interactions of overlapping finite element meshes is presented. Referred to as embedded mesh methods here, these overlapping mesh methods typically include a foreground solid mesh and a background Euler fluid grid or solid mesh. A number of different approaches have been used in previous work to characterize the interactions of the background and foreground meshes at the interface. Lagrange multipliers are well suited to enforce the continuity constraints but care must be taken such that the resulting formulation is stable. Several Lagrange multiplier techniques are examined in this work and applied to coupling solid meshes and fluid-structure interaction type problems. In addition, details regarding implementation in a two-step, multi-material, Arbitrary Lagrangian Eulerian (ALE) code are presented. Example problems demonstrate convergence and applicability to a range of problems. In particular, the fluid-structure interaction examples focus on blast applications.

74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Noh, W.F., A time-dependent, two space dimensional, coupled eulerian-Lagrangian code, Meth. comput. phys., 3, 117-180, (1964)
[2] Benson, D.J., An efficient, accurate, simple ale method for nonlinear finite element programs, Comput. meth. appl. mech. engrg., 72, 305-350, (1989) · Zbl 0675.73037
[3] Glowinski, R.; Pan, T.W.; Hesla, T.I.; Joseph, D.D., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow pas moving rigid bodies: application to particulate flow, J. comput. phys., 169, 363-426, (2001) · Zbl 1047.76097
[4] Hansbo, A.; Hansbo, P.; Larson, M.G., A finite element method on composite grids based on nitsche’s method, ESAIM: mathematical modeling and numerical, Analysis, 37, 209-225, (2003)
[5] Zhang, L.; Gerstenberger, A.; Wang, X.D.; Liu, W.K., Immersed finite element method, Comput. meth. appl. mech. engrg., 193, 21-22, 2051-2067, (2004) · Zbl 1067.76576
[6] Benson, D.J.; Okazawa, S., Contact in a multi-material Eulerian finite element formulation, Comput. meth. appl. mech. engrg., 193, 4277-4298, (2004) · Zbl 1068.74069
[7] Aquelet, N.; Souli, M.; Euler, Olovsson L., Lagrange coupling with damping effects: application to slamming problems, Comput. meth. appl. mech. engrg., 195, 110-132, (2006) · Zbl 1137.74430
[8] Legay, A.; Chessa, J.; Belytschko, T., An eulerian – lagrangian method for fluid-structure interaction based on level sets, Comput. meth. appl. mech. engrg., 195, 2070-2087, (2006) · Zbl 1119.74053
[9] Wang, H.; Belytschko, T., Fluid-structure interaction by the discontinous-Galerkin method for large deformations, Int. J. numer. meth. engrg., 77, 30-49, (2009) · Zbl 1195.74204
[10] Gerstenberger, A.; Wall, W.A., An embedded Dirichlet formulation for 3D continua, Int. J. numer. meth. engrg., 82, 537-563, (2010) · Zbl 1188.74056
[11] J.D. Sanders, M.A. Puso, An embedded mesh method for treating overlapping finite element meshes, Int. J. Numer. Meth. Engrg. 91 (3) 289-305. · Zbl 1246.74064
[12] LS-DYNA users’s manual - version 971. Livermore Software Technology Corp. (LSTC), Livermore, CA, 2007.
[13] ABAQUS user’s manual - version 6.10. Dessault Systèmes Simulia Corp., Pawtucket, RI, 2009.
[14] Lew, A.J.; Buscaglia, G.C., A discontinuous-Galerkin based immersed boundary method, Int. J. numer. meth. engrg., 76, 4, 427-454, (2008) · Zbl 1195.76258
[15] Bechét, E.; Moës, N.; Wohlmuth, B., A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method, Int. J. numer. meth. engrg., 78, 931-954, (2009) · Zbl 1183.74259
[16] T. Belytschko, B. Moran, W.K. Liu, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Chichester, West Sussex England, 2000. · Zbl 0959.74001
[17] Fedkiw, R.P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method, J. comput. phys., 152, 457-492, (1999) · Zbl 0957.76052
[18] Arienti, M.; Hung, P.; Morano, E.; Shepherd, J.E., A level set approach to eulerian – lagrangian coupling, J. comput. phys., 185, 213-251, (2003) · Zbl 1047.76567
[19] Deiterding, R.; Radovitzky, R.; Mauch, S.P.; Noels, L.; Cummings, J.C.; Meiron, D.I., A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading, Engrg. comput., 22, 325-347, (2006)
[20] A.B. Wardlaw, J.A. Luton, J.R. Renzi, K.C. Kiddy, R.M. McKeown, The Gemini coupled hydrocode. Technical report IHTR 2500, Indian Head Division Naval Surface Warfare Center, 2003.
[21] Peskin, C.S., Numerical analysis of blood flow in the heart, J. comput. phys., 25, 220-252, (1977) · Zbl 0403.76100
[22] Sanders, J.D.; Dolbow, J.E.; Mucha, P.M.; Laursen, T.A., A new method for simulating rigid body motion in incompressible two-phase flow, Int. J. numer. meth. fluids, 67, 713-732, (2010) · Zbl 1329.76365
[23] Steger, J.L.; Benek, J.A., On the use of composite grid schemes in computational aerodynamics, Comput. meth. appl. mech. engrg., 64, 301-320, (1987) · Zbl 0607.76061
[24] S.W. Attaway, R.L. Bell, C.T. Vaughan, S.P. Goudy, K.B. Morrill, Experiences with coupled codes for modeling explosive blast interacting with a concrete building, in: Proceedings of the Workshop on Coupled Eulerian and Lagrangian Methodologies, 2001.
[25] G.C. Bessette, C.T. Vaughan, R.L. Bell, Zapotec: a coupled Euler-Lagrange program for modeling earth penetration, Technical report SAND2002-3679C, Sandia National Laboratories, 2001.
[26] J Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36, 1971.
[27] Girault, V.; Glowinski, R., Error analysis of a fictitious domain method applied to a Dirichlet problem, Jpn. J. indust. appl. math., 12, 487-514, (1994) · Zbl 0843.65076
[28] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. meth. appl. mech. engrg., 199, 2680-2686, (2010) · Zbl 1231.65207
[29] Baaijens, F.P.T., A fictitious domain/mortar element method for fluid-structure interaction, Int. J. numer. meth. engrg., 35, 743-761, (2001) · Zbl 0979.76044
[30] Youngs, D.L.; Youngs, D.L., Time-dependent multi-material flow with large fluid distortion, (), 273-285 · Zbl 0537.76071
[31] Sanders, J.D.; Laursen, T.A.; Puso, M.A., A Nitsche embedded mesh method, Comput. mech., 49, 243-257, (2012) · Zbl 1366.74075
[32] Baiges, J.; Codina, R.; Henke, F.; Shahmiri, S.; Wall, W.A., A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes, Int. J. numer. meth. engrg., 90, 636-658, (2012) · Zbl 1242.76108
[33] Carpenter, N.J.; Taylor, R.L.; Katona, M.G., Lagrange constraints for transient finite element surface contact, Int. J. numer. meth. engrg., 32, 103-128, (1991) · Zbl 0763.73053
[34] Martin Hautefeuille, Chandrasekhar Annavarapu, John E. Dolbow, Robust imposition of dirichlet boundary conditions on embedded surfaces, Int. J. Numer. Meth. Engrg. (2011) n/a – n/a. · Zbl 1242.76124
[35] Wohlmuth, B.I., A mortar finite element method using dual spaces for the Lagrange multiplier, Soc. indust. appl. math., 38, 989-1012, (2000) · Zbl 0974.65105
[36] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. meth. appl. mech. engrg., 99, 235-394, (1991) · Zbl 0763.73052
[37] A. Nichols, Users manual for ale3d, Technical report UCRL-SM-404490, Lawrence Livermore National Laboratory, 2009.
[38] Leveque, R.J., Finite volume methods for hyperbolic problems, (2002), Cambridge University Press New York, NY · Zbl 1010.65040
[39] Benson, D.J., Momentum advection on a staggered mesh, J. comput. phys., 100, 143-162, (1992) · Zbl 0758.76038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.