zbMATH — the first resource for mathematics

Existence of periodic solutions of a periodic SEIRS model with general incidence. (English) Zbl 1354.34085
Summary: For a family of periodic SEIRS models with general incidence, we prove the existence of at least one endemic periodic orbit when some condition related to \(\mathcal{R}_0\) holds. Additionally, we prove the existence of a unique disease-free periodic orbit, that is globally asymptotically stable when \(\mathcal{R}_0 < 1\). In particular, our main result generalizes the one in [T. Zhang et al., Appl. Math., Praha 57, No. 6, 601–616 (2012; Zbl 1274.34150)]. We also discuss some examples where our results apply and show that, in some particular situations, we have a sharp threshold between existence and non existence of an endemic periodic orbit.

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C25 Periodic solutions to ordinary differential equations
92D30 Epidemiology
37C60 Nonautonomous smooth dynamical systems
34D20 Stability of solutions to ordinary differential equations
PDF BibTeX Cite
Full Text: DOI
[1] Li, M. Y.; Muldowney, J. S., Global stability for the SEIR model in epidemiology, Math. Biosci., 125, 2, 155-164, (1995) · Zbl 0821.92022
[2] Li, M. Y.; Smith, H. L.; Wang, L., Global dynamics an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62, 1, 58-69, (2001), URL http://dx.doi.org/10.1137/S0036139999359860 · Zbl 0991.92029
[3] van den Driessche, P., Deterministic compartmental models: extensions of basic models, (Mathematical Epidemiology, Lecture Notes in Math., vol. 1945, (2008), Springer Berlin), 147-157 · Zbl 1206.92036
[4] Cori, A.; Valleron, A.; Carrat, F.; Scalia Tomba, G.; Thomas, G.; Bolle, P., Estimating influenza latency and infectious period durations using viral excretion data, Epidemics, 4, 3, 132-138, (2012), URL http://dx.doi.org/10.1016/j.epidem.2012.06.001
[5] Edlund, S.; Kaufman, J.; Lessler, J.; Douglas, J.; Bromberg, M.; Kaufman, Z.; Bassal, R.; Chodick, G.; Marom, R.; Shalev, V.; Mesika, Y.; Ram, R.; Leventhal, A., Comparing three basic models for seasonal influenza, Epidemics, 3, 3-4, 135-142, (2011), URL http://dx.doi.org/10.1016/j.epidem.2011.04.002
[6] Mateus, J. P.; Silva, C. M., A non-autonomous SEIRS model with general incidence rate, Appl. Math. Comput., 247, 169-189, (2014), URL http://dx.doi.org/10.1016/j.amc.2014.08.078 · Zbl 1338.92133
[7] Wang, F. J.S.; Derrick, W. R., On deterministic epidemic models, Bull. Inst. Math. Acad. Sin., 6, 1, 73-84, (1978) · Zbl 0385.92014
[8] Bai, Z.; Zhou, Y., Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Anal. RWA, 13, 3, 1060-1068, (2012), URL http://dx.doi.org/10.1016/j.nonrwa.2011.02.008 · Zbl 1239.34038
[9] Gao, S.; Chen, L.; Teng, Z., Pulse vaccination of an SEIR epidemic model with time delay, Nonlinear Anal. RWA, 9, 2, 599-607, (2008), URL http://dx.doi.org/10.1016/j.nonrwa.2006.12.004 · Zbl 1144.34390
[10] Nakata, Y.; Kuniya, T., Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl., 363, 1, 230-237, (2010), URL http://dx.doi.org/10.1016/j.jmaa.2009.08.027 · Zbl 1184.34056
[11] Kuniya, T.; Nakata, Y., Permanence and extinction for a nonautonomous SEIS epidemic model, Appl. Math. Comput., 218, 18, 9321-9331, (2012), URL http://dx.doi.org/10.1016/j.amc.2012.03.011 · Zbl 1245.34038
[12] Zhang, T.; Teng, Z., On a nonautonomous SEIRS model in epidemiology, Bull. Math. Biol., 69, 8, 2537-2559, (2007), URL http://dx.doi.org/10.1007/s11538-007-9231-z · Zbl 1245.34040
[13] Liu, W. M.; Hethcote, H. W.; Levin, S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25, 4, 359-380, (1987), URL http://dx.doi.org/10.1007/BF00277162 · Zbl 0621.92014
[14] Zhou, Y.; Xiao, D.; Li, Y., Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, Chaos Solitons Fractals, 32, 5, 1903-1915, (2007), URL http://dx.doi.org/10.1016/j.chaos.2006.01.002 · Zbl 1195.92058
[15] Safi, M. A.; Garba, S. M., Global stability analysis of SEIR model with Holling type II incidence function, Comput. Math. Methods Med., 8, (2012), Art. ID 826052 · Zbl 1256.92041
[16] Zhang, T.; Teng, Z., Extinction and permanence for a pulse vaccination delayed SEIRS epidemic model, Chaos Solitons Fractals, 39, 5, 2411-2425, (2009), URL http://dx.doi.org/10.1016/j.chaos.2007.07.012 · Zbl 1197.34090
[17] Korobeinikov, A.; Maini, P. K., A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1, 1, 57-60, (2004), URL http://dx.doi.org/10.3934/mbe.2004.1.57 · Zbl 1062.92061
[18] Hethcote, H. W.; Lewis, M. A.; van den Driessche, P., An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol., 27, 1, 49-64, (1989), URL http://dx.doi.org/10.1007/BF00276080 · Zbl 0714.92021
[19] Hethcote, H. W.; van den Driessche, P., Some epidemiological models with nonlinear incidence, J. Math. Biol., 29, 3, 271-287, (1991), URL http://dx.doi.org/10.1007/BF00160539 · Zbl 0722.92015
[20] Ruan, S.; Wang, W., Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188, 1, 135-163, (2003), URL http://dx.doi.org/10.1016/S0022-0396(02)00089-X · Zbl 1028.34046
[21] Wang, W.; Zhao, X.-Q., Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20, 3, 699-717, (2008), URL http://dx.doi.org/10.1007/s10884-008-9111-8 · Zbl 1157.34041
[22] Rebelo, C.; Margheri, A.; Bacaër, N., Persistence in seasonally forced epidemiological models, J. Math. Biol., 64, 6, 933-949, (2012), URL http://dx.doi.org/10.1007/s00285-011-0440-6 · Zbl 1303.92122
[23] Zhang, T.; Liu, J.; Teng, Z., Existence of positive periodic solutions of an SEIR model with periodic coefficients, Appl. Math., 57, 6, 601-616, (2012), URL http://dx.doi.org/10.1007/s10492-012-0036-5 · Zbl 1274.34150
[24] Gaines, R. E.; Mawhin, J. L., (Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics, vol. 568, (1977), Springer-Verlag Berlin-New York) · Zbl 0339.47031
[25] Mawhin, J., Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations, 12, 610-636, (1972) · Zbl 0244.47049
[26] Tian, J. P.; Wang, J., Some results in Floquet theory, with applications to periodic epidemic models, Appl. Anal., 6, 1128-1152, (2015) · Zbl 1381.34031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.