×

zbMATH — the first resource for mathematics

High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation. (English) Zbl 1353.74071
Summary: In this contribution, a strategy is proposed for uncoupling geometrical description and approximation with the X-FEM. The strategy is based on an uniform coarse mesh that defines a high order approximation of the mechanical fields and an adapted mesh that defines the geometrical features by means of levelsets. The connection between the geometry and the approximation is obtained by sharing the quadtree trees of the two meshes. Numerical examples involving level-set based parts, convergence studies, mechanical computations and numerical homogenization show good promise for this approach.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74N15 Analysis of microstructure in solids
Software:
ITK
PDF BibTeX Cite
Full Text: DOI
References:
[1] Frey, P.; George, P., Mesh generation: application to finite elements, (2000), Hermes Science Publishing Ltd
[2] Matt Staten, Why is hex meshing so hard?, what is the cubit team doing about it? in: Cubit Users Meeting, 2007.
[3] Saulèv, V.K., On the solution of some boundary value problems on high performance computers by fictitious domain method, Siberian mathematical journal, 4, 912-925, (1963)
[4] Del Pino, S.; Pironneau, O., A fictitious domain based general PDE solver, () · Zbl 1004.65133
[5] Girault, V.; Glowinski, R., Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan journal of industrial and applied mathematics, 12, 487-514, (1995) · Zbl 0843.65076
[6] Hansbo, A.; Hansbo, P.; Larson, M.G., A finite element method on composite grids based on nitsches method, ESAIM. mathematical modelling and numerical analysis, 37, 495-514, (2003) · Zbl 1031.65128
[7] Parvizian, Jamshid; Düster, Alexander; Rank, Ernst, Finite cell method - h and p extension for embedded domain problems in solid mechanics, Computational mechanics, 41, 1, 121-133, (2007) · Zbl 1162.74506
[8] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Computer methods in applied mechanics and engineering, 197, 45-48, 3768-3782, (2008) · Zbl 1194.74517
[9] Schillinger, D.; Düster, A.; Rank, E., The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics, International journal for numerical methods in engineering, (2011)
[10] Schillinger, Dominik; Rank, Ernst, An unfitted hp-adaptive finite element method based on hierarchical b-splines for interface problems of complex geometry, Computer methods in applied mechanics and engineering, 200, 47-48, 3358-3380, (2011) · Zbl 1230.74197
[11] Nguyen, Vinh Phu; Rabczuk, Timon; Bordas, Stéphane; Duflot, Marc, Meshless methods: A review and computer implementation aspects, Mathematics and computers in simulation, 79, 763-813, (2008) · Zbl 1152.74055
[12] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Computer methods in applied mechanics and engineering, 181, 43-69, (2000) · Zbl 0983.65127
[13] Duarte, C.A.; Babuška, I.; Oden, J.T., Generalized finite element methods for three-dimensional structural mechanics problems, Computers and structures, 77, 2, 215-232, (2000)
[14] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, International journal for numerical methods in engineering, 46, 131-150, (1999) · Zbl 0955.74066
[15] Osher, S.; Sethian, J.A., Fronts propagations with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of computational physics, 79, 12-49, (1988) · Zbl 0659.65132
[16] Moës, N.; Gravouil, A.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets. part I: mechanical model, International journal for numerical methods in engineering, 53, 2549-2568, (2002) · Zbl 1169.74621
[17] Gravouil, A.; Moës, N.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets. part II: level set update, International journal for numerical methods in engineering, 53, 2569-2586, (2002) · Zbl 1169.74621
[18] Pereira, J.P.; Duarte, C.A.; Guoy, D.; Jiao, X., Hp -generalized FEM and crack surface representation for non-planar 3-D cracks, International journal for numerical methods in engineering, 77, 5, 601-633, (2009) · Zbl 1156.74383
[19] Sukumar, N.; Chopp, D.L.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite element method, Computer methods in applied mechanics and engineering, 190, 6183-6200, (2001) · Zbl 1029.74049
[20] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, J.-F., A computational approach to handle complex microstructure geometries, Computer methods in applied mechanics and engineering, 192, 3163-3177, (2003) · Zbl 1054.74056
[21] Aragón, Alejandro M.; Armando Duarte, C.; Philippe, H., Geubelle, generalized finite element enrichment functions for discontinuous gradient fields, International journal for numerical methods in engineering, 82, 2, 242-268, (2010) · Zbl 1188.74051
[22] Strouboulis, T.; Zhang, L.; Babuška, I., Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids, Computer methods in applied mechanics and engineering, 192, 28-30, 3109-3161, (2003) · Zbl 1054.74059
[23] Fries, Thomas-Peter; Belytschko, Ted, The extended/generalized finite element method: an overview of the method and its applications, International journal for numerical methods in engineering, 84, 3, 253-304, (2010) · Zbl 1202.74169
[24] Yazid, Abdelaziz; Abdelkader, Nabbou; Abdelmadjid, Hamouine, A state-of-the-art review of the X-FEM for computational fracture mechanics, Applied mathematical modelling, 33, 12, 4269-4282, (2009) · Zbl 1172.74050
[25] Dréau, Kristell; Chevaugeon, Nicolas; Moës, Nicolas, Studied X-FEM enrichment to handle material interfaces with higher order finite element, Computer methods in applied mechanics and engineering, 199, 29-32, 1922-1936, (2010) · Zbl 1231.74406
[26] Cheng, Kwok Wah; Fries, Thomas-Peter, Higher-order XFEM for curved strong and weak discontinuities, International journal for numerical methods in engineering, 82, 564-590, (2009) · Zbl 1188.74052
[27] Prabel, B.; Combescure, A.; Gravouil, A.; Marie, S., Level set X-FEM non-matching meshes: application to dynamic crack propagation in elastic-plastic media, International journal for numerical methods in engineering, 69, 8, 1553-1569, (2007) · Zbl 1194.74465
[28] Rannou, J.; Limodin, N.; Réthoré, J.; Gravouil, A.; Ludwig, W.; Baı¨etto-Dubourg, M.C.; Buffière, J.Y.; Combescure, A.; Hild, F.; Roux, S., Three dimensional experimental and numerical multiscale analysis of a fatigue crack, Computer methods in applied mechanics and engineering, 199, 21-22, 1307-1325, (2010) · Zbl 1227.74056
[29] Nitsche, J., Über ein variationprinzip zur lösung von Dirichlet-problem bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abhandlungen aus dem mathematischen seminar der universität Hamburg, 36, 9-15, (1971) · Zbl 0229.65079
[30] Hansbo, Anita; Hansbo, Peter, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Computer methods in applied mechanics and engineering, 193, 33-35, 3523-3540, (2004) · Zbl 1068.74076
[31] Dolbow, John; Harari, Isaac, An efficient finite element method for embedded interface problems, International journal for numerical methods in engineering, 78, 2, 229-252, (2009) · Zbl 1183.76803
[32] Embar, Anand; Dolbow, John; Harari, Isaac, Imposing Dirichlet boundary conditions with nitsche’s method and spline-based finite elements, International journal for numerical methods in engineering, 83, 877-898, (2010) · Zbl 1197.74178
[33] Melenk, J.M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Computer methods in applied mechanics and engineering, 139, 289-314, (1996) · Zbl 0881.65099
[34] Stolarska, M.; Chopp, D.L.; Moës, N.; Belytschko, T., Modelling crack growth by level sets and the extended finite element method, International journal for numerical methods in engineering, 51, 8, 943-960, (2001) · Zbl 1022.74049
[35] Stazi, S.F.L.; Budyn, E.; Chessa, J.; Belytschko, T., An extented finite element method with higher-order elements for curved cracks, Computational mechanics, 31, 38-48, (2003) · Zbl 1038.74651
[36] Legay, A.; Wang, H.W.; Belytschko, T., Strong and weak arbitrary discontinuities in spectral finite elements, International journal for numerical methods in engineering, 64, 991-1008, (2005) · Zbl 1167.74045
[37] Sukumar, N.; Chopp, D.L.; Bchet, E.; Mos, N., Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method, International journal for numerical methods in engineering, 76, 5, 727-748, (2008) · Zbl 1195.76390
[38] A. Huerta, E. Casoni, E. Sala-Lardies, S. Fernandez-Mendez, J. Peraire, Modeling discontinuities with high-order elements, in: ECCM 2010 - Paris, 2010.
[39] Legrain, G.; Cartraud, P.; Perreard, I.; Moës, N., An X-FEM and level set computational approach for image-based modelling: application to homogenization, International journal for numerical methods in engineering, 86, 7, 915-934, (2011) · Zbl 1235.74297
[40] I. Ionescu, N. Moës, P. Cartraud, M. Beringhier, Application de x-fem et des level-sets l’homogénéisation de matériaux aléatoires caractérisés par imagerie numérique, in: 8e COLLOQUE NATIONAL EN CALCUL DES STRUCTURES, 2007.
[41] M. Chiad, W.-D. Lian, S. Guessasma, G. Legrain, G. Della Valle, P. Cartraud, Modélisation numérique par une approche micromécanique du comportement de mousses solides alimentaires, in; 9e Colloque National en Calcul des Structures, 2009.
[42] Patrice Cartraud, Irina Ionescu, Gregory Legrain, Nicolas Moës, Image-based computational homogenization of random materials using level sets and x-fem, in: 5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) - 8th. World Congress on, Computational Mechanics (WCCM8), 2008.
[43] W.-D. Lian, G. Legrain, P. Cartraud, Comparison of two computational approaches for image-based micromechanical modeling, in: IV European Conference on, Computational Mechanics, 2010. · Zbl 06149122
[44] Coupez, T., Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of computational physics, 230, 7, 2391-2405, (2011) · Zbl 1218.65139
[45] Fernández-Méndez, Sonia; Huerta, Antonio, Imposing essential boundary conditions in mesh-free methods, Computer methods in applied mechanics and engineering, 193, 12-14, 1257-1275, (2004) · Zbl 1060.74665
[46] Griebel, M.; Schweitzer, M.A., (), 517-540
[47] Legrain, G.; Allais, R.; Cartraud, P., On the use of the extended finite element method with quatree/octree meshes, International journal for numerical methods in engineering, 86, 6, 717-743, (2011) · Zbl 1235.74296
[48] Harari, I.; Dolbow, J., Analysis of an efficient finite element method for embedded interface problems, Computational mechanics, 46, 205-211, (2010) · Zbl 1190.65172
[49] Stenberg, Rolf, On some techniques for approximating boundary conditions in the finite element method, Journal of computational and applied mathematics, 63, 1-3, 139-148, (November 1995)
[50] Mourad, H.; Dolbow, J.E.; Harari, I., A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces, International journal for numerical methods in engineering, 69, 772-793, (2007) · Zbl 1194.65136
[51] Tran, A.B.; Yvonnet, J.; He, Q.-C.; Toulemonde, C.; Sanahuja, J., A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM, International journal for numerical methods in engineering, 85, 11, 1436-1459, (2011) · Zbl 1217.74138
[52] Hinnant, Howard E., A fast method of numerical quadrature for p-version finite element matrices, International journal for numerical methods in engineering, 37, 21, 3723-3750, (1994) · Zbl 0814.73059
[53] Szabó, Barna; Babuška, Ivo, Finite element analysis, (1991), John Wiley & Sons New York · Zbl 0792.73003
[54] J.J. Ródenas-garcı´a, E. Nadal, J. Albelda, F.J. Fuenmayor Fernández, H-adaptive refinement based on a nearly statically admissible recovered stress field for meshes independent of the geometry, in: IV European Conference on, Computational Mechanics, 2010.
[55] Pierre Arnaud Raviart; Jean-Marie Thomas, Introduction á l’analyse numérique des équations aux dérivées partielles, (1998), Dunod Paris · Zbl 0561.65069
[56] Remacle, J.-F.; Marchandise, E.; Chevaugeon, N.; Geuzaine, C., Efficient visualization of high order finite elements, International journal for numerical methods in engineering, 69, 4, 750-771, (2007) · Zbl 1194.76226
[57] L. Ibanez, W. Schroeder, L. Ng, Cates J. The ITK Software Guide, 2005 edition, Kitware, Inc., 2005.
[58] Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D., Determination of the size of the representative volume element for random composites: statistical and numerical approach, International journal of solids and structures, 40, 13-14, 3647-3679, (2003) · Zbl 1038.74605
[59] Kanit, Toufik; N’Guyen, Franck; Forest, Samuel; Jeulin, Dominique; Reed, Matt; Singleton, Scott, Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry, Computer methods in applied mechanics and engineering, 195, 33-36, 3960-3982, (2006) · Zbl 1386.74121
[60] Ostoja-Starzewski, Martin, Material spatial randomness: from statistical to representative volume element, Probabilistic engineering mechanics, 21, 2, 112-132, (2006)
[61] K. Dréau, N. Chevaugeon, N. Moës, Higher order x-fem for curved cracks, in: IV European Conference on, Computational Mechanics, 2010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.