×

zbMATH — the first resource for mathematics

Classical and robust orthogonal regression between parts of compositional data. (English) Zbl 1353.62072
Summary: The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts constitute the relevant information to be analysed. Practically, this information can be included in a system of orthonormal coordinates. For the task of regression of one part on other parts, a specific choice of orthonormal coordinates is proposed which allows for an interpretation of the regression parameters in terms of the original parts. In this context, orthogonal regression is appropriate since all compositional parts – also the explanatory variables – are measured with errors. Besides classical (least-squares based) parameter estimation, also robust estimation based on robust principal component analysis is employed. Statistical inference for the regression parameters is obtained by bootstrap; in the robust version the fast and robust bootstrap procedure is used. The methodology is illustrated with a data set from macroeconomics.

MSC:
62H99 Multivariate analysis
62J05 Linear regression; mixed models
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/978-94-009-4109-0 · doi:10.1007/978-94-009-4109-0
[2] DOI: 10.1002/9781119976462 · doi:10.1002/9781119976462
[3] Pawlowsky-Glahn V, Modeling and analysis of compositional data (2015) · Zbl 1177.86018
[4] Eaton ML, Multivariate statistics. A vector space approach (1983)
[5] DOI: 10.1007/s11004-005-7381-9 · Zbl 1177.86018 · doi:10.1007/s11004-005-7381-9
[6] DOI: 10.1016/j.cageo.2011.06.014 · doi:10.1016/j.cageo.2011.06.014
[7] DOI: 10.1007/s11004-011-9333-x · doi:10.1007/s11004-011-9333-x
[8] DOI: 10.1080/02664763.2011.644268 · doi:10.1080/02664763.2011.644268
[9] DOI: 10.1080/02331888.2015.1135155 · Zbl 1359.62223 · doi:10.1080/02331888.2015.1135155
[10] DOI: 10.1016/j.jhydrol.2014.08.028 · doi:10.1016/j.jhydrol.2014.08.028
[11] DOI: 10.1007/s11004-009-9238-0 · Zbl 1178.86018 · doi:10.1007/s11004-009-9238-0
[12] Pawlowsky-Glahn V, SERRA 15 pp 384– (2001)
[13] DOI: 10.1023/A:1023818214614 · Zbl 1302.86024 · doi:10.1023/A:1023818214614
[14] DOI: 10.1016/j.csda.2012.02.012 · Zbl 1255.62116 · doi:10.1016/j.csda.2012.02.012
[15] DOI: 10.1002/9780470316665 · doi:10.1002/9780470316665
[16] DOI: 10.1016/j.sigpro.2007.04.004 · Zbl 1186.94229 · doi:10.1016/j.sigpro.2007.04.004
[17] DOI: 10.1093/biomet/76.1.149 · Zbl 0664.62030 · doi:10.1093/biomet/76.1.149
[18] DOI: 10.1007/s11749-009-0155-9 · Zbl 1203.62106 · doi:10.1007/s11749-009-0155-9
[19] DOI: 10.1023/A:1021979409012 · doi:10.1023/A:1021979409012
[20] DOI: 10.1002/(SICI)1099-095X(199907/08)10:4<363::AID-ENV362>3.0.CO;2-0 · doi:10.1002/(SICI)1099-095X(199907/08)10:4<363::AID-ENV362>3.0.CO;2-0
[21] DOI: 10.1016/S0047-259X(03)00057-5 · Zbl 1032.62028 · doi:10.1016/S0047-259X(03)00057-5
[22] DOI: 10.1198/004017005000000166 · doi:10.1198/004017005000000166
[23] DOI: 10.1002/0470010940 · Zbl 1094.62040 · doi:10.1002/0470010940
[24] DOI: 10.1017/CBO9780511802843 · doi:10.1017/CBO9780511802843
[25] DOI: 10.1198/016214506000000096 · Zbl 1120.62319 · doi:10.1198/016214506000000096
[26] Van Aelst S, J Statist Softw (2013)
[27] DOI: 10.1214/aos/1021379865 · Zbl 1012.62028 · doi:10.1214/aos/1021379865
[28] DOI: 10.1002/cem.2657 · doi:10.1002/cem.2657
[29] DOI: 10.1007/s11004-007-9141-5 · Zbl 1135.62040 · doi:10.1007/s11004-007-9141-5
[30] Saikia D, Afr J Agric Res 6 pp 6766– (2011)
[31] Todorov V, J Statist Softw (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.