zbMATH — the first resource for mathematics

A new approach to the Assad-Kirk fixed point theorem. (English) Zbl 1353.54028
In this paper, the authors extended the well-known Assad-Kirk fixed point theorem [N. A. Assad and W. A. Kirk, Pac. J. Math. 43, 553–562 (1972; Zbl 0239.54032)] via the idea of D. Wardowski [Fixed Point Theory Appl. 2012, Paper No. 94, 6 p., electronic only (2012; Zbl 1310.54074)].

54H25 Fixed-point and coincidence theorems (topological aspects)
54C60 Set-valued maps in general topology
54E50 Complete metric spaces
Full Text: DOI
[1] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, New York, 2009. · Zbl 1176.47037
[2] Ahmad, A.; Imdad, M., Some common fixed point theorems for mappings and multi-valued mappings, J. Math. Anal. Appl., 218, 546-560, (1998) · Zbl 0888.54046
[3] Ahmad, A.; Khan, A. R., Some common fixed point theorems for non-selfhybrid contractions, J. Math. Anal. Appl., 213, 275-286, (1997) · Zbl 0902.47047
[4] I. Altun, G. Mınak and H. Dağ, Multivalued F-contractions on complete metric space. J. Nonlinear Convex Anal. 16 (2015), 659-666. · Zbl 1315.54032
[5] I. Altun, G. Durmaz, G. Mınak and S. Romaguera, Multivalued almost Fcontractions on complete metric spaces. Filomat, to appear. · Zbl 0375.47031
[6] Altun, I.; Olgun, M.; Mınak, G., On a new class of multivalued weakly Picard operators on complete metric spaces, Taiwanese J. Math., 19, 659-672, (2015) · Zbl 1357.54029
[7] N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type. Pacific J. Math. 43 (1972), 553-562. · Zbl 0239.54032
[8] Berinde, M.; Berinde, V., On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326, 772-782, (2007) · Zbl 1117.47039
[9] Berinde, V.; Păcurar, M., The role of the Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform., 22, 35-42, (2013)
[10] L. B. Ćirić, Multi-valued nonlinear contraction mappings. Nonlinear Anal. 71 (2009), 2716-2723. · Zbl 1179.54053
[11] B. C. Dhage, U. P. Dolhare and A. Petruşel, Some common fixed point theorems for sequences of non-self multivalued operators in metrically convex metric spaces. Fixed Point Theory 4 (2003), 143-158. · Zbl 1067.47071
[12] Huang, N. J.; Cho, Y. J., Common fixed point theorems for a sequence of set-valued mappings, J. Korean Math. Soc., 4, 1-10, (1997)
[13] Itoh, S., Multivalued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolin., 18, 247-258, (1977) · Zbl 0359.54038
[14] Khan, M. S., Common fixed point theorems for multivalued mappings, Pacific J. Math., 95, 337-347, (1981) · Zbl 0419.54030
[15] G. Mınak, M. Olgun and I. Altun, A new approach to fixed point theorems for multivalued contractive maps. Carpathian J. Math. 31 (2015), 241-248. · Zbl 1349.54111
[16] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141 (1989), 177-188. · Zbl 0688.54028
[17] Nadler, S. B., Multi-valued contraction mappings, Pacific J. Math., 30, 475-488, (1969) · Zbl 0187.45002
[18] M. Olgun, G. Mınak and I. Altun, A new approach to Mizoguchi-Takahashi type fixed point theorems. J. Nonlinear Convex Anal., to appear.
[19] Reich, S., Fixed points of contractive functions, Boll. Unione Mat. Ital., 5, 26-42, (1972) · Zbl 0249.54026
[20] Reich, S., Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl., 62, 104-113, (1978) · Zbl 0375.47031
[21] Suzuki, T., Mizoguchi-takahashi’s fixed point theorem is a real generalization of nadler’s, J. Math. Anal. Appl., 340, 752-755, (2008) · Zbl 1137.54026
[22] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012 (2012), doi:10.1186/1687-1812-2012-94, 6 pages. · Zbl 0187.45002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.