Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap. (English) Zbl 1353.35002

Summary: Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all).


35-04 Software, source code, etc. for problems pertaining to partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q82 PDEs in connection with statistical mechanics
Full Text: DOI arXiv


[1] Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S.; Leggett, A.J., Bose – einstein condensation in the alkali gases: some fundamental concepts, Rev. mod. phys., Rev. mod. phys., 73, 307-356, (2001)
[2] Pitaevskii, L.; Stringari, S.; Pethick, C.J.; Smith, H., Bose – einstein condensation in dilute gases, (2002), Cambridge University Press Cambridge
[3] Tiwari, R.P.; Shukla, A., A basis-set based Fortran program to solve the gross – pitaevskii equation for dilute Bose gases in harmonic and anharmonic traps, Comput. phys. commun., 174, 966-982, (2006) · Zbl 1196.81039
[4] Bao, W.; Tang, W., Ground-state solution of bose – einstein condensate by directly minimizing the energy functional, J. comput. phys., 187, 230-254, (2003) · Zbl 1028.82500
[5] Schneider, B.I.; Feder, D.L., Numerical approach to the ground and excited state of a bose – einstein condensed gas confined in a completely anisotropic trap, Phys. rev. A, 59, 2232-2242, (1999)
[6] Chiofalo, M.L.; Succi, S.; Tosi, M.P., Ground state of trapped interacting bose – einstein condensates by an explicit imaginary-time algorithm, Phys. rev. E, 62, 7438-7444, (2000)
[7] Cerimele, M.M.; Chiofalo, M.L.; Pistella, F.; Succi, S.; Tosi, M.P., Numerical solution of the gross – pitaevskii equation using an explicit finite-difference scheme: an application to trapped bose – einstein condensates, Phys. rev. E, 62, 1382-1389, (2000)
[8] Chang, S.L.; Chien, C.S.; Jeng, B.W., Computing wave functions of nonlinear Schrödinger equations: A time-independent approach, J. comput. phys., 226, 104-130, (2007) · Zbl 1129.65077
[9] Palpacelli, S.; Succi, S.; Spigler, R., Ground-state computation of bose – einstein condensates by an imaginary-time quantum lattice Boltzmann scheme, Phys. rev. E, 76, 036712, (2007)
[10] Javidi, M.; Golbabai, A., Numerical studies on nonlinear Schrödinger equations by spectral collocation method with preconditioning, J. math. anal. appl., 333, 1119-1127, (2007) · Zbl 1117.65141
[11] Wang, H.Q., A time-splitting spectral method for coupled gross – pitaevskii equations with applications to rotating bose – einstein condensates, J. comput. appl. math., 205, 88-104, (2007) · Zbl 1118.65112
[12] Brtka, M.; Gammal, A.; Tomio, L., Relaxation algorithm to hyperbolic states in gross – pitaevskii equation, Phys. lett. A, 359, 339-344, (2006) · Zbl 1193.35182
[13] Hua, W.; Liu, X.H.; Ding, P.H., Numerical solution for the gross – pitaevskii equation, J. math. chem., 40, 243-255, (2006) · Zbl 1160.82307
[14] Xu, Z.L.; Han, H., Absorbing boundary conditions for nonlinear Schrödinger equations, Phys. rev. E, 74, 037704, (2006)
[15] Javanainen, J.; Ruostekoski, J., Symbolic calculation in development of algorithms: split-step methods for the gross – pitaevskii equation, J. phys. A, 39, L179-L184, (2006) · Zbl 1091.35091
[16] Schneider, B.I.; Collins, L.A.; Hu, S.X., Parallel solver for the time-dependent linear and nonlinear Schrödinger equation, Phys. rev. E, 73, 036708, (2006)
[17] Succi, S.; Toschi, F.; Tosi, M.P., Bose – einstein condensates and the numerical solution of the gross – pitaevskii equation, Comput. sci. engrg., 7, 48-57, (2005)
[18] Chang, S.M.; Kuo, Y.C.; Lin, W.W., A continuation BSOR-lanczos – galerkin method for positive bound states of a multi-component bose – einstein condensate, J. comput. phys., 210, 439-458, (2005) · Zbl 1082.82007
[19] Bao, W.Z.; Shen, J., Fourth-order time-splitting laguerre – hermite pseudospectral method for bose – einstein condensates, SIAM J. sci. comput., 26, 2010-2028, (2005) · Zbl 1084.35083
[20] Chang, S.M.; Lin, W.W.; Shieh, S.F., Gauss – seidel-type methods for energy states of a multi-component bose – einstein condensate, J. comput. phys., 202, 367-390, (2005) · Zbl 1056.81088
[21] Bao, W.Z.; Du, Q., Computing the ground state solution of bose – einstein condensates by a normalized gradient flow, SIAM J. sci. comput., 25, 1674-1697, (2004) · Zbl 1061.82025
[22] Lai, M.C.; Huang, C.Y.; Lin, T.S., A simple dufort – frankel-type scheme for the gross – pitaevskii equation of bose – einstein condensates on different geometries, Numer. methods partial differential equations, 20, 624-638, (2004) · Zbl 1050.81079
[23] Bao, W.Z., Ground states and dynamics of multicomponent bose – einstein condensates, Multiscale modeling simulation, 2, 210-236, (2004) · Zbl 1062.82034
[24] Zhou, A., An analysis of finite-dimensional approximations for the ground state solution of bose – einstein condensates, Nonlinearity, 17, 541-550, (2004) · Zbl 1051.35094
[25] Choi, Y.S.; Javanainen, J.; Koltracht, I., A fast algorithm for the solution of the time-independent gross – pitaevskii equation, J. comput. phys., 190, 1-21, (2003) · Zbl 1027.65157
[26] Muruganandam, P.; Adhikari, S.K., Bose – einstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods, J. phys. B, 36, 2501-2513, (2003)
[27] Bao, W.Z.; Jin, S.; Markowich, P.A., On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. comput. phys., 175, 487-524, (2002) · Zbl 1006.65112
[28] Bao, W.Z.; Jaksch, D.; Markowich, P.A., Numerical solution of the gross – pitaevskii equation for bose – einstein condensation, J. comput. phys., 187, 318-342, (2003) · Zbl 1028.82501
[29] Vignolo, P.; Chiofalo, M.L.; Tosi, M.P., Explicit finite-difference and particle method for the dynamics of mixed Bose-condensate and cold-atom clouds, J. comput. phys., 182, 368-391, (2002) · Zbl 1013.82002
[30] Adhikari, S.K.; Muruganandam, P., Bose – einstein condensation dynamics from the numerical solution of the gross – pitaevskii equation, J. phys. B, 35, 2831-2843, (2002)
[31] Cerimele, M.M.; Chiofalo, M.L.; Pistella, F., Numerical solution of the stationary gross – pitaevskii equation: tests of a combined imaginary-time-marching technique with splitting, Nonlinear anal. theory methods appl., 47, 3345-3356, (2001) · Zbl 1042.82573
[32] Bao, W.Z.; Jin, S.; Markowich, P.A., Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. sci. comput., 25, 27-64, (2003) · Zbl 1038.65099
[33] Adhikari, S.K., Numerical solution of the two-dimensional gross – pitaevskii equation for trapped interacting atoms, Phys. lett. A, 265, 91-96, (2000)
[34] Gammal, A.; Frederico, T.; Tomio, L., Improved numerical approach for the time-independent gross – pitaevskii nonlinear Schrödinger equation, Phys. rev. E, 60, 2421-2424, (1999)
[35] Fetter, A.L., Variational study of dilute Bose condensate in a harmonic trap, J. low temp. phys., 106, 643-652, (1997)
[36] Dodd, R.J., Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of bose – einstein condensates, J. res. national inst. standards tech., 101, 545-552, (1996)
[37] Adhikari, S.K., Numerical study of the spherically symmetric gross – pitaevskii equation in two space dimensions, Phys. rev. E, 62, 2937-2944, (2000)
[38] Adhikari, S.K., Numerical study of the coupled time-dependent gross – pitaevskii equation: application to bose – einstein condensation, Phys. rev. E, 63, 056704, (2001)
[39] Dalfovo, F.; Stringari, S., Bosons in anisotropic traps: ground state and vortices, Phys. rev. A, 53, 2477-2485, (1996)
[40] Yuan, Q.X.; Ding, G.H., Computing ground state solution of bose – einstein condensates trapped in one-dimensional harmonic potential, Comm. theoret. phys., 46, 873-878, (2006)
[41] Holland, M.J.; Cooper, J., Expansion of a bose – einstein condensate in a harmonic potential, Phys. rev. A, 53, R1954-R1957, (1996)
[42] Cerimele, M.M.; Pistella, F.; Succi, S., Particle-inspired scheme for the gross – pitaevskii equation: an application to bose – einstein condensation, Comput. phys. commun., 129, 82-90, (2000) · Zbl 1112.82305
[43] Palpacelli, S.; Succi, S., Quantum lattice Boltzmann simulation of expanding bose – einstein condensates in random potentials, Phys. rev. E, 77, 066708, (2008)
[44] Aftalion, A.; Du, Q., Vortices in a rotating bose – einstein condensate: critical angular velocities and energy diagrams in the Thomas-Fermi regime, Phys. rev. A, 64, 063603, (2001)
[45] Lehtovaara, L.; Toivanen, J.; Eloranta, J., Solution of time-independent Schrödinger equation by the imaginary time propagation method, J. comput. phys., 221, 148-157, (2007) · Zbl 1110.65096
[46] Edwards, M.; Burnett, K., Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms, Phys. rev. A, 51, 1382-1386, (1995)
[47] Ruprecht, P.A.; Holland, M.J.; Burnett, K.; Edwards, M., Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms, Phys. rev. A, 51, 4704-4711, (1995)
[48] Baer, R., Accurate and efficient evolution of nonlinear Schrödinger equations, Phys. rev. A, 62, 063810, (2000)
[49] Koonin, S.E.; Meredith, D.C., Computational physics: Fortran version, (1990), Addison-Wesley Reading · Zbl 0699.65001
[50] Ames, W.F., Numerical methods for partial differential equations, (1992), Academic Press New York · Zbl 0219.35007
[51] Dautray, R.; Lions, J.L., Mathematical analysis and numerical methods for science and technology, vol. 6, (1993), Springer-Verlag Berlin, (Ch. XX, Sec. 2)
[52] Adhikari, S.K.; Adhikari, S.K., Dynamics of a collapsing and exploding bose – einstein condensed vortex state, Phys. rev. A, Phys. rev. A, 66, 043601, (2002)
[53] Adhikari, S.K., Nonlinear Schrödinger equation for a superfluid Fermi gas in the BCS-BEC crossover, Phys. rev. A, 77, 045602, (2008)
[54] Adhikari, S.K., Superfluid fermi – fermi mixture: phase diagram, stability, and soliton formation, Phys. rev. A, 76, 053609, (2007)
[55] Salasnich, L.; Adhikari, S.K.; Toigo, F.; Girardeau, M.; Girardeau, M.D., Permutation symmetry of many-particle wave functions, Phys. rev. A, J. math. phys., Phys. rev., 139, B500-B508, (1965)
[56] Adhikari, S.K.; Adhikari, S.K.; Adhikari, S.K.; Rajendran, S.; Muruganandam, P.; Lakshmanan, M., Non-stationary excitations in bose – einstein condensates under the action of periodically varying scattering length with time-dependent frequencies, Phys. rev. A, Phys. rev. A, New J. phys., Physica D, 227, 1-7, (2007) · Zbl 1110.82028
[57] Adhikari, S.K., Free expansion of attractive and repulsive bose – einstein condensed vortex states, Phys. rev. A, 65, 033616, (2002)
[58] Kozuma, M.; Deng, L.; Hagley, E.W.; Wen, J.; Lutwak, R.; Helmerson, K.; Rolston, S.L.; Phillips, W.D., Coherent splitting of bose – einstein condensed atoms with optically induced Bragg diffraction, Phys. rev. lett., 82, 871-880, (1999)
[59] Hau, L.V.; Busch, B.D.; Liu, C.; Dutton, Z.; Burns, M.M.; Golovchenko, J.A., Near-resonant spatial images of confined bose – einstein condensates in a 4-dee magnetic bottle, Phys. rev. A, 58, R54-R57, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.