×

Synchronization of heterogeneous oscillators under network modifications: perturbation and optimization of the synchrony alignment function. (English) Zbl 1353.34061

This paper concerns the synchrony alignment function (SAF) which quantifies the relationship between phase oscillators’ frequencies and the structure of the network formed by coupling them, in the sense of providing an objective measure for the network’s ability to synchronize. The main results involve analysing the effect on the SAF of adding or removing edges from the network. This allows the authors to rank both the existing edges and potential new edges in terms of the effect of their removal or addition on the value of the SAF, and thus the synchronizability of the network. The authors also develop gradient-descent algorithms for the optimisation of synchrony, in which the network can be rewired in several different ways (only removing edges, only adding edges, rewiring a fixed number of edges). They also demonstrate the success of their algorithms in less than ideal circumstances. The results are all well-illustrated with numerical examples.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
92B25 Biological rhythms and synchronization
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, {\it The Kuramoto model: A simple paradigm for synchronization phenomena}, Rev. Modern Phys., 77 (2005), p. 137.
[2] R. R. Aliev, W. Richards, and J. P. Wikswo, {\it A simple nonlinear model of electrical activity in the intestine}, J. Theoret. Biol., 204 (2000), pp. 21-28.
[3] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, {\it Synchronization in complex networks}, Phys. Rep., 469 (2008), pp. 93-153.
[4] K. E. Atkinson, {\it An Introduction to Numerical Analysis}, Wiley, New York, 2008.
[5] M. Barahona and L. M. Pecora, {\it Synchronization in small-world systems}, Phys. Rev. Lett., 89 (2002), 054101.
[6] A. Békéssy, P. Bekessy, and J. Komlós, {\it Asymptotic enumeration of regular matrices}, Stud. Sci. Math. Hungary, 7 (1972), pp. 343-353. · Zbl 0277.05002
[7] A. Ben-Israel and T. N. Greville, {\it Generalized Inverses: Theory and Applications}, Springer CMS Books Math. 15, New York, 2003. · Zbl 1026.15004
[8] S. Boyd and L. Vandenberghe, {\it Convex Optimization}, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1058.90049
[9] M. Brede, {\it Synchrony-optimized networks of non-identical Kuramoto oscillators}, Phys. Lett. A, 372 (2008), pp. 2618-2622. · Zbl 1220.92004
[10] L. Buzna, S. Lozano, and A. Díaz-Guilera, {\it Synchronization in symmetric bipolar population networks}, Phys. Rev. E, 80 (2009), 066120. · Zbl 1305.90096
[11] M. Dadashi, I. Barjasteh, and M. Jalili, {\it Rewiring dynamical networks with prescribed degree distribution for enhancing synchronizability}, Chaos, 20 (2010), 043119.
[12] C. Davis and W. M. Kahan, {\it The rotation of eigenvectors by a perturbation.} III, SIAM J. Numer. Anal., 7 (1970), pp. 1-46. · Zbl 0198.47201
[13] F. Dorfler and F. Bullo, {\it Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators}, SIAM J. Control Optim., 50 (2012), pp. 1616-1642. · Zbl 1264.34105
[14] P. Erdös and A. Rényi, {\it On the evolution of random graphs}, Publ. Math. Inst. Hungar. Acad. Sci., 5 (1960), pp. 17-61. · Zbl 0103.16301
[15] G. B. Ermentrout and N. Kopell, {\it Frequency plateaus in a chain of weakly coupled oscillators,} I, SIAM J. Math. Anal., 15 (1984), pp. 215-237. · Zbl 0558.34033
[16] M. Fiedler, {\it Algebraic connectivity of graphs}, Czechoslovak Math. J., 23 (1973), pp. 298-305. · Zbl 0265.05119
[17] L. Glass and M. C. Mackey, {\it From Clocks to Chaos: The Rhythms of Life}, Princeton University Press, Princeton, NJ, 1988. · Zbl 0705.92004
[18] D. F. Gleich, {\it PageRank beyond the Web}, SIAM Rev., 57 (2015), pp. 321-363. · Zbl 1336.05122
[19] E. M. Izhikevich and B. Ermentrout, {\it Phase model}, Scholarpedia, 3 (2008), p. 1487.
[20] M. Jalili, {\it Enhancing synchronizability of diffusively coupled dynamical networks: A survey}, IEEE Trans. Neural Networks Learning Systems, 24 (2013), pp. 1009-1022.
[21] M. Jalili, A. A. Rad, and M. Hasler, {\it Enhancing synchronizability of weighted dynamical networks using betweenness centrality}, Phys. Rev. E, 78 (2008), 016105. · Zbl 1309.05167
[22] A. Karma, {\it Physics of cardiac arrhythmogenesis}, Annu. Rev. Condens. Matter Phys., 4 (2013), pp. 313-337.
[23] F. G. Kazanci and B. Ermentrout, {\it Pattern formation in an array of oscillators with electrical and chemical coupling}, SIAM J. Appl. Math., 67 (2007), pp. 512-529. · Zbl 1110.37065
[24] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al., {\it Optimization by simmulated annealing}, Science, 220 (1983), pp. 671-680. · Zbl 1225.90162
[25] Y. Kuramoto, {\it Chemical Oscillations, Waves, and Turbulence}, Springer Ser. Synergetics 19, Springer, New York, 2012. · Zbl 0558.76051
[26] A. Kuznetsov, M. K\aern, and N. Kopell, {\it Synchrony in a population of hysteresis-based genetic oscillators}, SIAM J. Appl. Math., 65 (2004), pp. 392-425. · Zbl 1090.34031
[27] S. Lozano, L. Buzna, and A. Díaz-Guilera, {\it Role of network topology in the synchronization of power systems}, Eur. Phys. J. B, 85 (2012), pp. 1-8. · Zbl 1305.90096
[28] G. S. Medvedev and N. Kopell, {\it Synchronization and transient dynamics in the chains of electrically coupled Fitzhugh-Nagumo oscillators}, SIAM J. Appl. Math., 61 (2001), pp. 1762-1801. · Zbl 0984.34027
[29] A. Milanese, J. Sun, and T. Nishikawa, {\it Approximating spectral impact of structural perturbations in large networks}, Phys. Rev. E, 81 (2010), 046112.
[30] R. E. Mirollo and S. H. Strogatz, {\it Synchronization of pulse-coupled biological oscillators}, SIAM J. Appl. Math., 50 (1990), pp. 1645-1662. · Zbl 0712.92006
[31] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, {\it Spontaneous synchrony in power-grid networks}, Nature Phys., 9 (2013), pp. 191-197.
[32] B. Nabet, N. E. Leonard, I. D. Couzin, and S. A. Levin, {\it Dynamics of decision making in animal group motion}, J. Nonlinear Sci., 19 (2009), pp. 399-435. · Zbl 1169.93302
[33] T. Nishikawa and A. E. Motter, {\it Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions}, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 10342-10347.
[34] T. Nishikawa and A. E. Motter, {\it Comparative analysis of existing models for power-grid synchronization}, New J. Phys., 17 (2015), 015012. · Zbl 1452.91229
[35] R. Olfati-Saber, A. Fax, and R. M. Murray, {\it Consensus and cooperation in networked multi-agent systems}, Proc. IEEE, 95 (2007), pp. 215-233. · Zbl 1376.68138
[36] A. Olshevsky and J. N. Tsitsiklis, {\it Convergence speed in distributed consensus and averaging}, SIAM J. Control Optim., 48 (2009), pp. 33-55. · Zbl 1182.93008
[37] A. Olshevsky and J. N. Tsitsiklis, {\it Convergence speed in distributed consensus and averaging}, SIAM Rev., 53 (2011), pp. 747-772. · Zbl 1229.93007
[38] P. A. Parrilo, S. Lall, F. Paganini, G. C. Verghese, B. C. Lesieutre, and J. E. Marsden, {\it Model reduction for analysis of cascading failures in power systems}, in Proceedings of the American Control Conference, 1999, pp. 4208-4212.
[39] L. M. Pecora and T. L. Carroll, {\it Master stability functions for synchronized coupled systems}, Phys. Rev. Lett., 80 (1998), p. 2109.
[40] A. Pikovsky, M. Rosenblum, and J. Kurths, {\it Synchronization: A Universal Concept in Nonlinear Sciences}, Cambridge Nonlinear Sci. Ser. 12, Cambridge University Press, Cambridge, UK, 2003. · Zbl 1219.37002
[41] A. Prindle, P. Samayoa, I. Razinkov, T. Danino, L. S. Tsimring, and J. Hasty, {\it A sensing array of radically coupled genetic biopixels}, Nature, 481 (2012), pp. 39-44.
[42] J. G. Restrepo, E. Ott, and B. R. Hunt, {\it Onset of synchronization in large networks of coupled oscillators}, Phys. Rev. E, 71 (2005), 036151. · Zbl 1144.37402
[43] J. G. Restrepo, E. Ott, and B. R. Hunt, {\it Characterizing the dynamical importance of network nodes and links}, Phys. Rev. Lett., 97 (2006), 094102.
[44] J. G. Restrepo, E. Ott, and B. R. Hunt, {\it Emergence of coherence in complex networks of heterogeneous dynamical systems}, Phys. Rev. Lett., 96 (2006), 254103. · Zbl 1130.37347
[45] M. Rohden, A. Sorge, M. Timme, and D. Witthaut, {\it Self-organized synchronization in decentralized power grids}, Phys. Rev. Lett., 109 (2012), 064101. · Zbl 1374.05220
[46] M. Rosenblum and A. Pikovsky, {\it Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling}, Phys. Rev. Lett., 98 (2007), 064101.
[47] C. B. Saper, T. E. Scammell, and J. Lu, {\it Hypothalamic regulation of sleep and circadian rhythms}, Nature, 437 (2005), pp. 1257-1263.
[48] A. Sarlette and R. Sepulchre, {\it Consensus optimization on manifolds}, SIAM J. Control Optim., 48 (2009), pp. 56-76. · Zbl 1182.93010
[49] A. Schnitzler and J. Gross, {\it Normal and pathological oscillatory communication in the brain}, Nature Rev. Neurosci., 6 (2005), pp. 285-296.
[50] I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D. Helbing, {\it Transient dynamics increasing network vulnerability to cascading failures}, Phys. Rev. Lett., 100 (2008), 218701.
[51] P. S. Skardal and A. Arenas, {\it Control of coupled oscillator networks with application to microgrid technologies}, Science Advances, 1 (2015), e1500339.
[52] P. S. Skardal, D. Taylor, and J. Sun, {\it Optimal synchronization of complex networks}, Phys. Rev. Lett., 113 (2014), 144101.
[53] P. S. Skardal, D. Taylor, and J. Sun, {\it Optimal synchronization of directed complex networks}, Chaos, 26 (2016), 094807. · Zbl 1353.34061
[54] P. S. Skardal, D. Taylor, J. Sun, and A. Arenas, {\it Erosion of synchronization in networks of coupled oscillators}, Phys. Rev. E, 91 (2015), 010802.
[55] P. S. Skardal, D. Taylor, J. Sun, and A. Arenas, {\it Collective frequency variation in network synchronization and reverse pagerank}, Phys. Rev. E, 93 (2016), 042314.
[56] P. S. Skardal, D. Taylor, J. Sun, and A. Arenas, {\it Erosion of synchronization: Coupling heterogeneity and network structure}, Phys. D, 323 (2016), pp. 40-48. · Zbl 1364.34081
[57] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and E. Ott, {\it Theoretical mechanics: Crowd synchrony on the Millennium Bridge}, Nature, 438 (2005), pp. 43-44.
[58] J. Sun, E. M. Bollt, and T. Nishikawa, {\it Master stability functions for coupled nearly identical dynamical systems}, Europhys. Lett., 85 (2009), 60011.
[59] Y. Susuki, I. Mezić, and T. Hikihara, {\it Global swing instability in the New England power grid model}, in Proceedings of the American Control Conference, IEEE, 2009, pp. 3446-3451.
[60] D. Taylor and D. B. Larremore, {\it Social climber attachment in forming networks produces a phase transition in a measure of connectivity}, Phys. Rev. E, 86 (2012), 031140.
[61] D. Taylor, S. A. Myers, A. Clauset, M. A. Porter, and P. J. Mucha, {\it Eigenvector-Based Centrality Measures for Temporal Networks}, preprint, arXiv:1507.01266, 2015. · Zbl 1386.91116
[62] D. Taylor, E. Ott, and J. G. Restrepo, {\it Spontaneous synchronization of coupled oscillator systems with frequency adaptation}, Phys. Rev. E, 81 (2010), 046214.
[63] D. Taylor and J. G. Restrepo, {\it Network connectivity during mergers and growth: Optimizing the addition of a module}, Phys. Rev. E, 83 (2011), 066112.
[64] K. Wiesenfeld, P. Colet, and S. H. Strogatz, {\it Synchronization transitions in a disordered Josephson series array}, Phys. Rev. Lett., 76 (1996), p. 404.
[65] D. Wilson and J. Moehlis, {\it Clustered desynchronization from high-frequency deep brain stimulation}, PLoS Comput. Biol., 11 (2015), e1004673.
[66] A. T. Winfree, {\it Biological rhythms and the behavior of populations of coupled oscillators}, J. Theoret. Biol., 16 (1967), pp. 15-42.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.