zbMATH — the first resource for mathematics

The Eshelby, Hill, moment and concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostatics. (English) Zbl 1353.31006
Summary: One of the most cited papers in Applied Mechanics is the work of Eshelby from 1957 who showed that a homogeneous isotropic ellipsoidal inhomogeneity embedded in an unbounded (in all directions) homogeneous isotropic host would feel uniform strains and stresses when uniform strains or tractions are applied in the far-field. Of specific importance is the uniformity of Eshelby’s tensor \(\mathbf{S}\). Following Eshelby’s seminal work, a vast literature has been generated using and developing Eshelby’s result and ideas, leading to some beautiful mathematics and extremely useful results in a wide range of application areas. In 1961 Eshelby conjectured that for anisotropic materials only ellipsoidal inhomogeneities would lead to such uniform interior fields. Although much progress has been made since then, the quest to prove this conjecture is still not complete; numerous important problems remain open. Following a different approach to that considered by Eshelby, a closely related tensor \(\mathbf{P}=\mathbf{SD}^{0}\) arises, where \(\mathbf{D}^{0}\) is the host medium compliance tensor. The tensor \(\mathbf{P}\) is associated with Hill and is of course also uniform when ellipsoidal inhomogeneities are embedded in a homogeneous host phase. Two of the most fundamental and useful areas of applications of these tensors are in Newtonian potential problems such as heat conduction, electrostatics, etc. and in the vector problems of elastostatics. Knowledge of the Hill and Eshelby tensors permit a number of interesting aspects to be studied associated with inhomogeneity problems and more generally for inhomogeneous media. Micromechanical methods established mainly over the last half-century have enabled bounds on and predictions of the effective properties of composite media. In many cases such predictions can be explicitly written down in terms of the Hill tensor, or equivalently the Eshelby tensor and can be shown to provide excellent predictions in many cases.
Of specific interest is that a number of important limits of the ellipsoidal inhomogeneity can be taken in order to be employed in predictions of the effective properties of, for example, layered media and fibre reinforced composites and also to the cases when voids and cracks are present. In the main, results for the Hill and Eshelby tensors are distributed over a wide range of articles and books, using different notation and terminology and so it is often difficult to extract the necessary information for the tensor that one requires. The case of an anisotropic host phase is also frequently non-trivial due to the requirement of the associated Green’s tensor. Here this classical problem is revisited and a large number of results for problems that are felt to be of great utility in a wide range of disciplines are derived or recalled. A scaling argument leads to the derivation of the Eshelby tensor for potential problems where the host phase is at most orthotropic, without the requirement of using the anisotropic Green’s function. The Concentration tensor \(\mathbf{\mathcal{A}}\) linking interior fields to those imposed in the far-field is derived for a wide variety of problems. These results can therefore be used in the various micromechanical schemes.
Directly related to the tensors of Eshelby and Hill is the so-called Moment tensor \(\mathbf{M}\). As well as arising in the literature on micromechanics, this tensor is important in the vast area of research associated with inverse problems and specifically with the problem of identifying an object inside some domain given the application of a specific set of boundary conditions. Due to its fundamental importance and direct link to the Eshelby and Hill tensors, here we state the connection between \(\mathbf{M}, \mathbf{P}\) and \(\mathbf{S}\) in an effort to ensure that the work is of use to as wide a community as possible.
Both tensor and matrix formulations are considered and contrasted throughout. Appendices give various details that illustrate the implementation of both approaches.

31C15 Potentials and capacities on other spaces
74-XX Mechanics of deformable solids
Full Text: DOI
[1] Ammari, H., Kang, H.: Polarization and Moment Tensors. with Applications to Inverse Problems and Effective Medium Theory. Springer, Berlin (2000) · Zbl 1220.35001
[2] Ammari, H.; Kang, H.; Nakamura, G.; Tamura, K., Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elast., 67, 97-129, (2003) · Zbl 1089.74576
[3] Ammari, H.; Kang, H.; Lim, M., Effective parameters of elastic composites, Indiana Univ. Math. J., 55, 903-922, (2006) · Zbl 1210.74037
[4] Ammari, H.; Capdeboscq, Y.; Kang, H.; Lee, H.; Milton, G.W.; Zribi, H., Progress on the strong eshelby’s conjecture and extremal structures for the elastic moment tensor, J. Math. Pures Appl., 94, 93-106, (2010) · Zbl 1262.74018
[5] Ammari, H.; Kang, H.; Lee, H.; Lim, M., Enhancement of near cloaking using generalized polarization tensors vanishing structures. part I: the conductivity problem, Commun. Math. Phys., 317, 253-266, (2013) · Zbl 1303.35108
[6] Asaro, R.J.; Barnett, D.M., The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion, J. Mech. Phys. Solids, 23, 77-83, (1975) · Zbl 0294.73039
[7] Auld, B.A.: Acoustic Fields and Waves in Solids. Krieger, Melbourne (1990)
[8] Bacon, D.J.; Barnett, D.M.; Scattergood, R.O., Anisotropic continuum theory of lattice defects, Prog. Mater. Sci., 23, 51-262, (1980)
[9] Barthélémy, J.-F., Compliance and Hill polarization tensor of a crack in an anisotropic matrix, Int. J. Solids Struct., 46, 4064-4072, (2009) · Zbl 1183.74232
[10] Barthélémy, J.-F., Effective permeability of media with a dense network of long and micro fractures, Transp. Porous Media, 76, 153-178, (2009)
[11] Berryman, J.G., Generalization of eshelby’s formula for a single ellipsoidal elastic inclusion to poroelasticity and thermoelasticity, Phys. Rev. Lett., 79, 1142-1145, (1997)
[12] Bigoni, D.; Movchan, A.B., Statics and dynamics of structural interfaces in elasticity, Int. J. Solids Struct., 39, 4843-4865, (2002) · Zbl 1042.74034
[13] Bond, W.L., The mathematics of physical properties of crystals, Bell Syst. Tech. J., 22, 1-72, (1943)
[14] Buryachenko, V.: Micromechanics of Heterogeneous Materials. Springer, New York (2007) · Zbl 1133.74002
[15] Buryachenko, V.; Brun, M., FEA in elasticity of random structure composites reinforced by heterogeneities of non canonical shape, Int. J. Solids Struct., 48, 719-728, (2011) · Zbl 1236.74280
[16] Buryachenko, V.; Brun, M., Iteration method in linear elasticity of random structure composites containing heterogeneities of non canonical shape, Int. J. Solids Struct., 50, 1130-1140, (2013)
[17] Calvo-Jurado, C.; Parnell, W.J., Hashin-shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material, J. Math. Chem., 53, 828-843, (2014) · Zbl 1317.74078
[18] Chen, F.; Giraud, A.; Sevostianov, I.; Dragan, G., Numerical evaluation of the eshelby tensor for a concave superspherical inclusion, Int. J. Eng. Sci., 93, 51-58, (2015) · Zbl 06983529
[19] Cheng, Z.Q.; Batra, R.C., Exact eshelby tensor for a dynamic circular cylindrical inclusion, J. Appl. Mech. ASME, 66, 563-565, (1999)
[20] Cheng, Z.-Q.; He, L.-H., Micropolar elastic fields due to a spherical inclusion, Int. J. Eng. Sci., 33, 389-397, (1995) · Zbl 0899.73016
[21] Cheng, Z.-Q.; He, L.-H., Micropolar elastic fields due to a circular cylindrical inclusions, Int. J. Eng. Sci., 35, 659-668, (1997) · Zbl 0913.73004
[22] Cherepanov, G.P., Inverse problems of the plate theory of elasticity, J. Appl. Math. Mech., 38, 963-979, (1974) · Zbl 0315.73106
[23] Christensen, R.M.; Lo, K.H., Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, 27, 315-330, (1979) · Zbl 0419.73007
[24] Dive, P.: Attraction des ellipsoides homogénes et réciproques d’un théorème de Newton. Bull. Soc. Math. Fr. 59, 128-140 (1931) · Zbl 0004.16601
[25] Duan, H.L.; Wang, J.; Huang, Z.P.; Karihaloo, B.L., Eshelby formalism for nano-inhomogeneities, Proc. R. Soc. A, 461, 3335-3353, (2005) · Zbl 1370.74068
[26] Dunn, M.L.; Taya, M., Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites, Int. J. Solids Struct., 30, 161-175, (1993) · Zbl 0772.73068
[27] Dunn, M.L.; Wienecke, H.A., Inclusions and inhomogeneities in transversely isotropic piezoelectric solids, Int. J. Solids Struct., 34, 3571-3582, (1997) · Zbl 0942.74558
[28] Dvorak, G.: Micromechanics of Composite Materials. Springer, Berlin (2013)
[29] Edwards, R.H., Stress concentrations around spheroidal inclusions and cavities, J. Appl. Mech., 18, 19-30, (1951) · Zbl 0042.42201
[30] Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999) · Zbl 0953.74002
[31] Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. A, 241, 376-396, (1957) · Zbl 0079.39606
[32] Eshelby, J.D.; Sneddon, I.N. (ed.); Hill, R. (ed.), Elastic inclusions and inhomogeneities, No. 2, 87-140, (1961), The Netherlands
[33] Franciosi, P., On the modified Green operator integral for polygonal, polyhedral and other non-ellipsoidal inclusions, Int. J. Solids Struct., 42, 3509-3531, (2005) · Zbl 1127.74318
[34] Franciosi, P., The boundary-due terms in the Green operator of inclusion patterns from distant to contact and to connected situations using Radon transforms: illustration for spheroid alignments in isotropic media, Int. J. Solids Struct., 47, 304-319, (2010) · Zbl 1183.74039
[35] Franciosi, P.; Lormand, G., Using the Radon transform to solve inclusion problems in elasticity, Int. J. Solids Struct., 41, 585-606, (2004) · Zbl 1075.74516
[36] Fritzen, F.; Forest, S.; Böhlke, T.; Kondo, D.; Kanit, T., Computational homogenization of elasto-plastic porous metals, Int. J. Plast., 29, 102-119, (2012)
[37] Gao, Z., A circular inclusion with imperfect interface: eshelby’s tensor and related problems, J. Appl. Mech., 62, 860-866, (1995) · Zbl 0868.73016
[38] Gao, X.-L.; Ma, H.M., Green’s function and eshelby’s tensor based on a simplified strain gradient elasticity theory, Acta Mech., 207, 163-181, (2009) · Zbl 1173.74005
[39] Gao, X.-L.; Ma, H.M., Strain gradient solution for eshelby’s ellipsoidal inclusion problem, Proc. R. Soc. A, 466, 20090631, (2010) · Zbl 1194.35455
[40] Gavazzi, A.C.; Lagoudas, D.C., On the numerical evaluation of eshelby’s tensor and its application to elastoplastic fibrous composites, Comput. Mech., 7, 13-19, (1990)
[41] Giordano, S.; Palla, P.L.; Colombo, L., Nonlinear elastic Landau coefficients in heterogeneous materials, Europhys. Lett., 83, 66003, (2008)
[42] Giraud, A.; Huynh, Q.V.; Hoxha, D.; Kondo, D., Application of results on eshelby tensor to the determination of effective poroelastic properties of anisotropic rocks-like composites, Int. J. Solids Struct., 44, 3756-3772, (2007) · Zbl 1127.74036
[43] Goodier, J.N., Concentration of stress around spherical and cylindrical inclusions and flaws, J. Appl. Mech., 55, 39-44, (1933)
[44] Gruescu, C.; Montchiet, V.; Kondo, D., Eshelby tensor for a crack in an orthotropic elastic medium, C. R., Méc., 333, 467-473, (2005) · Zbl 1177.74331
[45] Hashin, Z., Theory of mechanical behaviour of heterogeneous solids, Appl. Mech. Rev., 17, 1-9, (1963)
[46] Hatta, H.; Taya, M., Thermal conductivity of coated filler composites, J. Appl. Phys., 59, 1851-1860, (1986)
[47] Hill, R., A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, 213-222, (1965)
[48] Hoenig, A., Elastic moduli of a non-randomly cracked body, Int. J. Solids Struct., 15, 137-154, (1979) · Zbl 0391.73089
[49] Hoenig, A., Thermal conductivities of a cracked solid, J. Compos. Mater., 17, 231-237, (1983)
[50] Hori, M.; Nemat-Nasser, S., Double-inclusion model and overall moduli of multi-phase composites, Mech. Mater., 14, 189-206, (1993)
[51] Hu, G.K.; Weng, G.J., The connections between the double-inclusion model and the ponte-castaneda-willis, Mori-Tanaka, and kuster-Töksoz models, Mech. Mater., 32, 495-503, (2000)
[52] Jiang, C.P.; Tong, Z.H.; Cheung, Y.K., A generalized self-consistent method accounting for fiber section shape, Int. J. Solids Struct., 40, 2589-2609, (2003) · Zbl 1087.74525
[53] Ju, J.W.; Sun, L.Z., Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. part I micromechanics based formulation, Int. J. Solids Struct., 38, 183-201, (2001) · Zbl 1085.74038
[54] Kanaun, S.K., Levin, V.M.: Self-Consistent Methods for Composites. Static Problems, vol. 2. Springer, Dordrecht (2008) · Zbl 1142.74003
[55] Kang, H., Conjectures of Pólya-szegö and eshelby, and the Newtonian potential problem: a review, Mech. Mater., 41, 405-410, (2009)
[56] Kang, H.; Milton, G.W., Solutions to the Pólya-szegö conjecture and the weak eshelby conjecture, Arch. Ration. Mech. Anal., 188, 93-116, (2008) · Zbl 1134.74013
[57] Kawashita, M.; Nozaki, H., Esehlby tensor of a polygonal inclusion and its special properties, J. Elast., 64, 71-84, (2001) · Zbl 1051.74004
[58] Kellogg, O.D.: Foundations of Potential Theory. Ungar, New York (1970) · Zbl 0152.31301
[59] Kim, C.I.; Schiavone, P., Designing an inhomogeneity with uniform interior stress in finite plane elastostatics, Int. J. Non-Linear Mech., 197, 285-299, (2007) · Zbl 1151.74327
[60] Kim, C.I.; Vasudevan, M.; Schiavone, P., Eshelby’s conjecture in finite plane elastostatics, Q. J. Mech. Appl. Math., 61, 63-73, (2008) · Zbl 1132.74007
[61] Kinoshita, N.; Mura, T., Elastic fields of inclusions in anisotropic media, Phys. Status Solidi (a), 5, 759-768, (1971)
[62] Laws, N., The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material, J. Elast., 7, 91-97, (1977) · Zbl 0384.73011
[63] Quang, H.; Bonnet, G.; He, Q.-C., Size-dependent eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting interfaces, Phys. Rev. B, 81, (2010)
[64] Lee, H.K.; Simunovic, S., A damage constitutive model of progressive debonding in aligned discontinuous fiber composites, Int. J. Solids Struct., 38, 875-895, (2001) · Zbl 1010.74006
[65] Levin, V.M.; Alvarez-Tostado, J.M., Eshelby’s formula for an ellipsoid elastic inclusion in anisotropic poroelasticity and thermoelasticity, Int. J. Fract., 119, 77-82, (2003)
[66] Li, J.Y.; Dunn, M.L., Anisotropic coupled-field inclusion and inhomogeneity problems, Philos. Mag. A, 77, 1341-1350, (1998)
[67] Li, S., Wang, G.: Introduction to Micromechanics and Nanomechanics. World Scientific, Singapore (2008) · Zbl 1169.74001
[68] Li, S.; Sauer, R.A.; Wang, G., The eshelby tensors in a finite spherical domain—part I: theoretical formulations, J. Appl. Mech., 74, 770-783, (2007)
[69] Li, S.; Wang, G.; Sauer, R.A., The eshelby tensors in a finite spherical domain—part II: applications to homogenization, J. Appl. Mech., 74, 784-797, (2007)
[70] Lin, S.C.; Mura, T., Elastic fields of inclusions in anisotropic media (ii), Phys. Solid State A, 15, 281-285, (1973)
[71] Liu, L.P., Solutions to the eshelby conjectures, Proc. R. Soc. A, 464, 573-594, (2008) · Zbl 1132.74010
[72] Liu, L., Solutions to the periodic eshelby inclusion problem in two dimensions, Math. Mech. Solids, 15, 557-590, (2009) · Zbl 1257.74034
[73] Liu, L.; James, R.D.; Leo, P.H., Periodic inclusion-matrix microstructures with constant field inclusions, Metall. Trans. A, 38, 781-787, (2007)
[74] Lubarda, V.A.; Markenscoff, X., On the absence of eshelby property for non-ellipsoidal inclusions, Int. J. Solids Struct., 35, 3405-3411, (1998) · Zbl 0918.73015
[75] Luo, H.A.; Weng, G.J., On eshelby’s inclusion problem in a three-phase spherically concentric solid, and a modification of Mori-tanaka’s method, Mech. Mater., 6, 347-361, (1987)
[76] Luo, H.A.; Weng, G.J., On eshelby’s S-tensor in a three-phase cylindrically concentric solid, and the elastic moduli of fiber-reinforced composites, Mech. Mater., 8, 77-88, (1989)
[77] Ma, H.; Hu, G., Eshely tensors for an ellipsoidal inclusion in a micropolar material, Int. J. Eng. Sci., 44, 595-605, (2006)
[78] Ma, H.; Hu, G., Eshelby tensors for an ellipsoidal inclusion in a microstretch material, Int. J. Eng. Sci., 44, 3049-3061, (2007) · Zbl 1221.74014
[79] Markenscoff, X., Inclusions with constant eigenstress, J. Mech. Phys. Solids, 46, 2297-2301, (1998) · Zbl 1007.74020
[80] Markenscoff, X., On the shape of the eshelby inclusions, J. Elast., 49, 163-166, (1998) · Zbl 0906.73014
[81] Markov, K.; Markov, K. (ed.); Preziosi, L. (ed.), Elementary micromechanics of heterogeneous media, 1-162, (2000), Boston · Zbl 0942.74058
[82] Masson, R., New explicit expressions of the Hill polarization tensor for general anisotropic elastic solids, Int. J. Solids Struct., 45, 757-769, (2008) · Zbl 1167.74329
[83] Maxwell, J.C.: A Treatise on Electricity and Magnetism, vols. 1 and 2. Oxford University Press, Oxford (1998) · Zbl 1049.01021
[84] Michelitsch, T.M.; Gao, H.; Levin, V.M., Dynamic eshelby tensor and potentials for ellipsoidal inclusions, Proc. R. Soc. A, 459, 863-890, (2003) · Zbl 1041.74029
[85] Mikata, Y., Determination of piezoelectric eshelby tensor in transversely isotropic piezoelectric solids, Int. J. Eng. Sci., 38, 605-641, (2000) · Zbl 1210.74074
[86] Mikata, Y., Explicit determination of piezoelectric eshelby tensors for a spheroidal inclusion, Int. J. Solids Struct., 38, 7045-7063, (2001) · Zbl 1013.74023
[87] Mikata, Y.; Nemat-Nasser, S., Elastic field due to a dynamically transforming spherical inclusion, Int. J. Solids Struct., 38, 7045-7063, (1990) · Zbl 0735.73003
[88] Mikata, Y.; Nemat-Nasser, S., Interaction of a harmonic wave with a dynamically transforming inhomogeneity, J. Appl. Phys., 70, 2071-2078, (1991)
[89] Milton, G.W.; Serkov, S.K., Coated inclusions in conductivity and anti-plane elasticity, Proc. R. Soc. A, 457, 1973-1999, (2001) · Zbl 1090.74558
[90] Moekher, M., Fourth-order Cartesian tensors: old and new facts, notions and applications, Q. J. Mech. Appl. Math., 61, 181-203, (2008) · Zbl 1147.15025
[91] Moschovidis, Z.A.; Mura, T., Two-ellipsoidal inhomogeneities by the equivalent inclusion method, J. Appl. Mech., 42, 847-852, (1975) · Zbl 0338.73015
[92] Mura, T.: Micromechanics of Defects in Solids. Kluwer, Hague (1982)
[93] Mura, T., The determination of the elastic field of a polygonal star shaped inclusion, Mech. Res. Commun., 24, 473-482, (1997) · Zbl 0896.73010
[94] Mura, T.; Shojda, H.M.; Lin, T.Y.; Makkawy, A., The determination of the elastic field of a pentagonal star shaped inclusion, Bull. Tech. Univ. Istanb., 47, 267-280, (1994) · Zbl 0859.73011
[95] Mura, T.; Shodja, H.M.; Hirose, Y., Inclusion problems, Appl. Mech. Rev., 49, s118-s127, (1996)
[96] Nguyen, S.T.; Dormieux, L.; Pape, Y.; Sanahuja, J., A burger model for the effective behavior of a microcracked viscoelastic solid, Int. J. Damage Mech., 20, 1116-1129, (2011)
[97] Nikliborc, W., Eine bemerkung über die volumpotentiale, Math. Z., 35, 625-631, (1932) · Zbl 0005.10601
[98] Nozaki, H.; Taya, M., Elastic fields in a polygon-shaped inclusion with uniform eigenstrains, J. Appl. Mech., 64, 495-502, (1997) · Zbl 0899.73316
[99] Onaka, S., Averaged eshelby tensor and elastic strain energy of a superspherical inclusion with uniform eigenstrains, Philos. Mag. Lett., 81, 265-272, (2001)
[100] Onaka, S., Elastic states of doughnut-like inclusions with uniform eigenstrains treated by averaged eshelby tensors, Philos. Mag. Lett., 82, 1-7, (2002)
[101] Pan, Y.-C.; Chou, T.-W., Point force solution for an infinite transversely isotropic solid, J. Appl. Mech., 43, 608-612, (1976) · Zbl 0352.73016
[102] Parnell, W.J.; Calvo-Jurado, C., On the computation of the hashin-shtrikman bounds for transversely isotropic two-phase linear elastic fibre-reinforced composites, J. Eng. Math., 95, 295-323, (2015) · Zbl 1317.74078
[103] Poisson, S.D.: Second mémoire sur la théorie de magnetisme. Mém. Acad. Sci. Inst. Fr. 5, 488-533 (1826)
[104] Pólya, G., Szegö, G.: Isoperimetric Inequalities for Polarization and Virtual Mass. 21 of Annals of Mathematical Studies. Princeton University Press, Princeton (1951) · Zbl 0044.38301
[105] Ponte Castañeda, P.; Willis, J.R., The effect of spatial distribution on the effective behaviour of composite materials and cracked media, J. Mech. Phys. Solids, 43, 1919-1951, (1995) · Zbl 0919.73061
[106] Qu, J., Cherkaoui, M.: Fundamentals of Micromechanics of Solids. Wiley, New York (2006)
[107] Robinson, K., Elastic energy of an ellipsoidal inclusion in an infinite solid, J. Appl. Phys., 22, 1045-1054, (1951) · Zbl 0043.39104
[108] Rodin, G.J., Eshelby’s inclusion problem for polygons and polyhedra, J. Mech. Phys. Solids, 44, 1977-1995, (1996) · Zbl 1298.37039
[109] Ru, C.Q., Interface design of neutral elastic inclusions, Int. J. Solids Struct., 35, 559-572, (1998) · Zbl 0931.74010
[110] Ru, C.Q., Analytic solution for eshelby’s problem of an inclusion of arbitrary shape in a plane or half-plane, J. Appl. Mech., 66, 315-322, (1999)
[111] Ru, C.Q.; Schiavone, P., On the elliptic inclusion in anti-plane shear, Math. Mech. Solids, 1, 327-333, (1996) · Zbl 1001.74509
[112] Ru, C.Q.; Schiavone, P.; Sudak, L.J.; Mioduchowski, A., Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics, Int. J. Non-Linear Mech., 40, 281-287, (2005) · Zbl 1349.74061
[113] Sadowsky, M.A.; Sternberg, E., Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavity, J. Appl. Mech., 14, 1947, (1947) · Zbl 0029.17103
[114] Sadowsky, M.A.; Sternberg, E., Stress concentration around a triaxial ellipsoidal cavity, J. Appl. Mech., 16, 149-157, (1949) · Zbl 0033.31402
[115] Sendeckyj, G.P., Elastic inclusion problems in plane elastostatics, Int. J. Solids Struct., 6, 1535-1543, (1970) · Zbl 0218.73021
[116] Sevostianov, I.; Yilmaz, N.; Kushch, V.; Levin, V., Effective elastic properties of matrix composites with transversely-isotropic phases, Int. J. Solids Struct., 42, 455-476, (2005) · Zbl 1143.74319
[117] Sharma, P.; Ganti, S., Size-dependent eshelby’s tensor for embedded nano-inclusions incorporating surface/interface, J. Appl. Mech., 71, 663-671, (2004) · Zbl 1111.74629
[118] Southwell, R.V.; Gough VI, H.J., On the concentration of stress in the neighbourhood of a small spherical flaw; and on the propagation of fatigue fractures in “statistically isotropic” materials, Lond. Edinb. Dublin Philos. Mag. J. Sci., 1, 71-97, (1926)
[119] Superspheres, S.O., Intermediate shapes between spheres and polyhedra, Symmetry, 4, 336-343, (2012) · Zbl 1351.51022
[120] Suvarov, A.P.; Dvorak, G.J., Rate form of the eshelby and Hill tensors, Int. J. Solids Struct., 39, 5659-5678, (2002) · Zbl 1042.74009
[121] Walpole, L.J., The elastic field of an inclusion in an anisotropic medium, Proc. R. Soc. A, 300, 270-289, (1967) · Zbl 0162.56301
[122] Walpole, L.J., The determination of the elastic field of an ellipsoidal inclusion in an anisotropic medium, Math. Proc. Camb. Philos. Soc., 81, 283-289, (1977) · Zbl 0359.73011
[123] Walpole, L.J., Elastic behaviour of composite materials: theoretical foundations, Adv. Appl. Math. Mech., 21, 169-242, (1981) · Zbl 0512.73056
[124] Walpole, L.J., Fourth-rank tensor of the thirty-two crystal classes: multiplication tables, Proc. R. Soc. A, 391, 149-179, (1984) · Zbl 0521.73005
[125] Wang, Y.M.; Weng, G.J., The influence of inclusion shape on the overall viscoelastic behavior of composites, J. Appl. Mech., 59, 510-518, (1992) · Zbl 0775.73173
[126] Wang, M.Z.; Xu, B.X., The arithmetic Mean theorem of eshelby tensor for a rotational symmetrical inclusion, J. Elast., 77, 13-23, (2004) · Zbl 1125.74317
[127] Weng, G.J., Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions, Int. J. Eng. Sci., 22, 845-856, (1984) · Zbl 0556.73074
[128] Weng, G.J., Explicit evaluation of willis’ bounds with ellipsoidal inclusions, Int. J. Eng. Sci., 30, 83-92, (1992) · Zbl 0850.73028
[129] Willis, J.R., Anisotropic elastic inclusion problems, Q. J. Mech. Appl. Math., 17, 157-174, (1964) · Zbl 0119.39602
[130] Willis, J.R., Bounds and self-consistent estimates for the overall moduli of anisotropic composites, J. Mech. Phys. Solids, 25, 185-202, (1977) · Zbl 0363.73014
[131] Willis, J.R., A polarization approach to the scattering of elastic waves—I. scattering by a single inclusion, J. Mech. Phys. Solids, 28, 287-305, (1980) · Zbl 0461.73012
[132] Willis, J.R., Variational and related methods for the overall properties of composites, Adv. Appl. Math. Mech., 21, 1-78, (1981) · Zbl 0476.73053
[133] Withers, P.J., The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials, Philos. Mag. A, 59, 759-781, (1989)
[134] Wu, T.T., On the effect of inclusion shape on the elastic moduli of a two-phase material, Int. J. Solids Struct., 2, 1-8, (1966)
[135] Yavari, A.; Goriely, A., Nonlinear elastic inclusions in isotropic solids, Proc. R. Soc. A, 469, (2013) · Zbl 1371.74047
[136] Zhang, Z.K.; Soh, A.K., Micromechanics predictions of the effective moduli of magnetoelectroelastic composite materials, Eur. J. Mech. A, Solids, 24, 1054-1067, (2005) · Zbl 1098.74662
[137] Zheng, Q.-S.; Zhao, Z.-H.; Du, D.X., Irreducible structure, symmetry and average of eshelby’s tensor fields in isotropic elasticity, J. Mech. Phys. Solids, 54, 368-383, (2006) · Zbl 1120.74335
[138] Zhou, K.; Keer, L.M.; Wang, Q.J., Semi-analytic solution for multiple interacting three-dimensional inhomogeneous inclusions of arbitrary shape in an infinite space, Int. J. Numer. Methods Eng., 87, 617-638, (2011) · Zbl 1242.74022
[139] Zhou, K.; Jen Hoh, H.; Wang, X.; Keer, L.M.; Pang, J.H.L.; Song, B.; Wang, Q.J., A review of recent works on inclusions, Mech. Mater., 60, 144-158, (2013)
[140] Zou, W.; He, Q.; Huang, M.; Zheng, Q., Eshelby’s problem of non-elliptical inclusions, J. Mech. Phys. Solids, 58, 346-372, (2010) · Zbl 1193.74011
[141] Zou, W.-N.; Zheng, Q.-S.; He, Q.-C., Solutions to eshelby’s problems of non-elliptical thermal inclusions and cylindrical elastic inclusions of non-elliptical cross-section, Proc. R. Soc. A, 467, 607-626, (2011) · Zbl 1428.74064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.