×

zbMATH — the first resource for mathematics

Human behaviors: a threat to mosquito control? (English) Zbl 1352.92149
Summary: In this work, we consider a simple theoretical model that enables us to take into account private human decisions that may interfere with public mosquito control. The model reflects the trade-off between perceived costs and observed efficacy. Our theoretical results emphasize that households may reduce their protective behavior in response to mechanical elimination techniques piloted by a public agent, leading to an increase in the total number of mosquitoes in the surrounding environment and generating a barrier for vector-borne diseases control. Our study is sufficiently generic to be applied to different arboviral diseases. It also shows that vector-control models and strategies have to take into account individual behaviors.

MSC:
92D30 Epidemiology
91C99 Social and behavioral sciences: general topics
Software:
RStudio
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adhvaryu, A., Learning, misallocation, and technology adoption: evidence from new malaria therapy in tanzania, Rev. Econ. Studies, rdu020, (2014)
[2] Angelini, P.; Macini, P.; Finarelli, A. C.; Po, C.; Venturelli, C.; Bellini, R.; Dottori, M., Chikungunya epidemic outbreak in emilia-romagna (Italy) during summer 2007, Parassitologia, 50, 1-2, 97-98, (2008)
[3] Anguelov, R.; Dumont, Y.; Lubuma, J., Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl., 64, 3, 374-389, (2012) · Zbl 1252.92044
[4] Anguelov, R.; Dumont, Y.; Lubuma, J. M.-S., On nonstandard finite difference schemes in biosciences, AIP Conference Proceedings, vol. 1487, 212-223, (2012), AIP Publishing
[5] Anguelov, R.; Dumont, Y.; Lubuma, J. M.S.; Mureithi, E., Stability analysis and dynamics preserving non-standard finite difference schemes for a malaria model, Math. Popul. Stud., 20, 2, 101-122, (2013)
[6] Anguelov, R.; Dumont, Y.; Lubuma, J. M.S.; Shillor, M., Dynamically consistent nonstandard finite difference schemes for epidemiological models, J. Comput. Appl. Math., 255, 161-182, (2014) · Zbl 1291.92097
[7] Arrow, K. J., Uncertainty and the welfare economics of medical care, Bull. World Health Organ., 82, 2, 141-149, (1963)
[8] Bainov, D.; Simeonov, P., Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66, (1993), CRC Press · Zbl 0815.34001
[9] Banerjee, A. V.; Duflo, E.; Glennerster, R.; Kothari, D., Improving immunisation coverage in rural India: clustered randomised controlled evaluation of immunisation campaigns with and without incentives, Br. Med. J., 340, (2010)
[10] Benedict, M. Q.; Levine, R. S.; Hawley, W. A.; Lounibos, L. P., Spread of the tiger: global risk of invasion by the mosquito aedes albopictus, Vector-Borne Zoonotic Dis., 7, 1, 76-85, (2007)
[11] Berthélemy, J.-C.; Thuilliez, J.; Doumbo, O.; Gaudart, J., Malaria and protective behaviours: is there a malaria trap?, Malar. J., 12, 1, 200, (2013)
[12] Boyer, S.; Foray, C.; Dehecq, J.-S., Spatial and temporal heterogeneities of aedes albopictus density in la Reunion Island: rise and weakness of entomological indices, PLoS ONE, 9, 3, e91170, (2014)
[13] Chan, T. Y.; Hamilton, B. H., Learning, private information, and the economic evaluation of randomized experiments, J. Polit. Econ., 114, 6, 997-1040, (2006)
[14] Chassang, S.; Snowberg, E.; Seymour, B.; Bowles, C., Accounting for behavior in treatment effects: new applications for blind trials, PLoS ONE, 10, 6, e0127227, (2015)
[15] Chitnis, N.; Hyman, J. M.; Cushing, J. M., Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70, 5, 1272-1296, (2008) · Zbl 1142.92025
[16] Davis, T. J.; Kaufman, P.; Hogsette, J.; Kline, D., The effects of larval habitat quality on aedes albopictus skip oviposition, J. Am. Mosq. Control Assoc., 31, 4, 321-328, (2015)
[17] De Abreu, F. V.S.; Morais, M. M.; Ribeiro, S. P.; Eiras, A. E., Influence of breeding site availability on the oviposition behaviour of aedes aegypti, Memórias Do Instituto Oswaldo Cruz, 110, 5, 669-676, (2015)
[18] Delatte, H.; Desvars, A.; Bouétard, A.; Bord, S.; Gimonneau, G.; Vourc’h, G.; Fontenille, D., Blood-feeding behavior of aedes albopictus , a vector of chikungunya on la réunion, Vector-Borne Zoonotic Dis., 10, 3, 249-258, (2010)
[19] Delatte, H.; Gimonneau, G.; Triboire, A.; Fontenille, D., Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of aedes albopictus, vector of chikungunya and dengue in the indian Ocean, J. Med. Entomol., 46, 1, 33-41, (2009)
[20] Dufourd, C.; Dumont, Y., Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control, Comput. Math. Appl., 66, 9, 1695-1715, (2013) · Zbl 1345.34105
[21] Y. Dumont. From exact schemes to nonstandard schemes for impulsive differential equations. Submitted.
[22] Dumont, Y.; Chiroleu, F., Vector control for the chikungunya disease, Math. Biosci. Eng., 7, 2, 313-345, (2010) · Zbl 1259.92071
[23] Dumont, Y.; Chiroleu, F.; Domerg, C., On a temporal model for the chikungunya disease: modeling, theory and numerics, Math. Biosci., 213, 1, 80-91, (2008) · Zbl 1135.92028
[24] Dumont, Y.; Tchuenche, J. M., Mathematical studies on the sterile insect technique for the chikungunya disease and aedes albopictus, J. Math. Biol., 65, 5, 809-854, (2012) · Zbl 1311.92175
[25] Dupas, P., Short-run subsidies and long-run adoption of new health products: evidence from a field experiment, Econometrica, 82, 1, 197-228, (2014)
[26] Geoffard, P.-Y.; Philipson, T., Rational epidemics and their public control, Int. Econ. Rev., 603-624, (1996) · Zbl 0862.90038
[27] Gersovitz, M.; Hammer, J. S., Tax/subsidy policies toward vector-borne infectious diseases, J. Public Econ., 89, 4, 647-674, (2005)
[28] Gratz, N. G., Critical review of the vector status of aedes albopictus, Med. Veterinary Entomol., 18, 3, 215-227, (2004)
[29] Halasa, Y. A.; Shepard, D. S.; Fonseca, D. M.; Farajollahi, A.; Healy, S.; Gaugler, R.; Bartlett-Healy, K.; Strickman, D. A.; Clark, G. G., Quantifying the impact of mosquitoes on quality of life and enjoyment of yard and porch activities in new jersey, PloS one, 9, 3, e89221, (2014)
[30] Jifa, J., The algebraïc criteria for the asymptotic behavior of cooperative systems with concave nonlinearities, J. Syst. Sci. Complex., 6, 3, 193, (1993) · Zbl 0787.34045
[31] Kremer, M.; Miguel, E., The illusion of sustainability, Q. J. Econ., 122, 3, 1007-1065, (2007)
[32] Lamiraud, K.; Geoffard, P.-Y., Therapeutic non-adherence: a rational behavior revealing patient preferences?, Health Econ., 16, 11, 1185-1204, (2007)
[33] Layard, R.; Mayraz, G.; Nickell, S., The marginal utility of income, J. Public Econ., 92, 8, 1846-1857, (2008)
[34] Manore, C. A.; Hickmann, K. S.; Xu, S.; Wearing, H. J.; Hyman, J. M., Comparing dengue and chikungunya emergence and endemic transmission in a. aegypti and a. albopictus, J. Theor. Biol., 356, 174-191, (2014)
[35] Paupy, C.; Ollomo, B.; Kamgang, B.; Moutailler, S.; Rousset, D.; Demanou, M.; Hervé, J.-P.; Leroy, E.; Simard, F., Comparative role of aedes albopictus and aedes aegypti in the emergence of dengue and chikungunya in central africa, Vector-Borne Zoonotic Dis., 10, 3, 259-266, (2010)
[36] Pierre, V.; Thiria, J.; Rachou, E.; Lassalle, C.; Sissoko, D.; Renault, P., Dengue fever outbreak in la réunion island in 2004, Poster International congress “Medicine and health in the tropics” Marseille, France, (2006)
[37] Rodrigues, H. S.; Monteiro, M. T.T.; Torres, D. F.M.; Zinober, A., Dengue disease, basic reproduction number and control, Int. J. Comput. Math., 89, 3, 334-346, (2012) · Zbl 1237.92042
[38] RStudio Team, Rstudio: integrated development environment for R, (2015), RStudio, Inc. Boston, MA
[39] Smith, H. L., Cooperative systems of differential equations with concave nonlinearities, Nonlinear Anal.: Theory, Meth. Appl., 10, 10, 1037-1052, (1986) · Zbl 0612.34035
[40] Smith, H. L., Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41, (2008), American Mathematical Society
[41] Thuilliez, J.; Bellia, C.; Dehecq, J.-S.; Reilhes, O., Household-level expenditure on protective measures against mosquitoes on the island of la Réunion, France, PLoS Negl Trop Dis, 8, 1, e2609, (2014)
[42] WHO, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control, (2009), WHO
[43] Yoshioka, M.; Couret, J.; Kim, F.; McMillan, J.; Burkot, T.; Dotson, E.; Kitron, U.; Vazquez-Prokopec, G., Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species aedes albopictus (diptera: culicidae), Parasites Vectors, 5, 1, 1-11, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.