×

A coupled level set-moment of fluid method for incompressible two-phase flows. (English) Zbl 1352.76091

Summary: A coupled level set and moment of fluid method (CLSMOF) is described for computing solutions to incompressible two-phase flows. The local piecewise linear interface reconstruction (the CLSMOF reconstruction) uses information from the level set function, volume of fluid function, and reference centroid, in order to produce a slope and an intercept for the local reconstruction. The level set function is coupled to the volume-of-fluid function and reference centroid by being maintained as the signed distance to the CLSMOF piecewise linear reconstructed interface.
The nonlinear terms in the momentum equations are solved using the sharp interface approach recently developed by M. Raessi and H. Pitsch [Modeling interfacial flows characterized by large density ratios with the level set method. Center for Turbulence Research, Annual Research Briefs 2009, 159–169 (2009)]. We have modified the algorithm of Raessi and Pitsch from a staggered grid method to a collocated grid method and we combine their treatment for the nonlinear terms with the variable density, collocated, pressure projection algorithm developed by N. Kwatra et al. [J. Comput. Phys. 228, No. 11, 4146–4161 (2009; Zbl 1273.76356)]. A collocated grid method makes it convenient for using block structured adaptive mesh refinement (AMR) grids. Many 2D and 3D numerical simulations of bubbles, jets, drops, and waves on a block structured adaptive grid are presented in order to demonstrate the capabilities of our new method.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76T10 Liquid-gas two-phase flows, bubbly flows

Citations:

Zbl 1273.76356

Software:

Gerris
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahn, H., Shashkov, M.: Geometric algorithms for 3D interface reconstruction. In: IMR’07, pp. 405–422 (2007) · Zbl 1134.65311
[2] Ahn, H., Shashkov, M.: Adaptive moment-of-fluid method. J. Comput. Phys. 228(8), 2792–2821 (2009) · Zbl 1282.76147 · doi:10.1016/j.jcp.2008.12.031
[3] Ahn, H., Shashkov, M., Christon, M.: The moment-of-fluid method in action. Commun. Numer. Methods Eng. 25(10), 1009–1018 (2009) · Zbl 1276.76049 · doi:10.1002/cnm.1135
[4] Ahn, H.T., Shashkov, M.: Multi-material interface reconstruction on generalized polyhedral meshes. J. Comput. Phys. 226, 2096–2132 (2007). doi: 10.1016/j.jcp.2007.06.033 . http://dl.acm.org/citation.cfm?id=1290206.1290465 · Zbl 1388.76232 · doi:10.1016/j.jcp.2007.06.033
[5] Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.: A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J. Comput. Phys. 142, 1–46 (1998) · Zbl 0933.76055 · doi:10.1006/jcph.1998.5890
[6] Anderson, W., Ryan, H., Santoro, J., Hewitt, R.: Combustion instability mechanism in liquid rocket engines using impinging jet injectors. In: 31st AIAA ASME SAE ASEE Joint Propulsion Conference, AIAA 95-2357 (1995)
[7] Arcoumanis, C., Gavaises, J., Nouri, E.A.W., Horrocks, R.: Analysis of the flow in the nozzle of a vertical multi hole diesel engine injector. Tech. Rep. SAE Paper 980811 (1998)
[8] Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85, 257–283 (1989) · Zbl 0681.76030 · doi:10.1016/0021-9991(89)90151-4
[9] Berger, M.J., Rigoustsos, I.: An algorithm for point clustering and grid generation. Tech. Rep. NYU-501, New York University-CIMS (1991)
[10] Bhaga, D., Weber, M.: Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. 105, 61–85 (1981) · doi:10.1017/S002211208100311X
[11] Cervone, A., Manservisi, S., Scardovelli, R., Zaleski, S.: A geometrical predictor-corrector advection scheme and its application to the volume fraction function. J. Comput. Phys. 228(2), 406–419 (2009) · Zbl 1158.76027 · doi:10.1016/j.jcp.2008.09.016
[12] Chang, Y., Hou, T., Merriman, B., Osher, S.: Eulerian capturing methods based on a level set formulation for incompressible fluid interfaces. J. Comput. Phys. 124, 449–464 (1996) · Zbl 0847.76048 · doi:10.1006/jcph.1996.0072
[13] Cummins, S., Francois, M., Kothe, D.: Estimating curvature from volume fractions. Comput. Struct. 83, 425–434 (2005) · doi:10.1016/j.compstruc.2004.08.017
[14] Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Technical Report LA-UR 07-1537, Los Alamos National Laboratory (2007) · Zbl 1220.76048
[15] Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227(11), 5361–5384 (2008) · Zbl 1220.76048 · doi:10.1016/j.jcp.2007.12.029
[16] Enright, D., Nguyen, D., Gibou, F., Fedkiw, R.: Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In: Kawahashi, M., Ogut, A., Tsuji, Y. (eds.) Proc. of the 4th ASME-JSME Joint Fluids Eng. Conf., FEDSM2003-45144, Honolulu, HI (2003)
[17] Fedkiw, R., Aslam, T., Xu, S.: The ghost fluid method for deflagration and detonation discontinuities. Technical Report CAM Report 98-36, University of California, Los Angeles (1998) · Zbl 0955.76071
[18] Francois, M., Cummins, S., Dendy, E., Kothe, D., Sicilian, J., Williams, M.: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213(1), 141–173 (2006) · Zbl 1137.76465 · doi:10.1016/j.jcp.2005.08.004
[19] Gross, S., Reusken, A.: An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. 224(1), 40–58 (2007) · Zbl 1261.76015 · doi:10.1016/j.jcp.2006.12.021
[20] Helmsen, J., Colella, P., Puckett, E.: Non-convex profile evolution in two dimensions using volume of fluids. LBNL Technical Report LBNL-40693, Lawrence Berkeley National Laboratory (1997)
[21] Kang, M., Fedkiw, R., Liu, X.D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323–360 (2000) · Zbl 1049.76046 · doi:10.1023/A:1011178417620
[22] Kwatra, N., Su, J., Grétarsson, J.T., Fedkiw, R.: A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys. 228, 4146–4161 (2009). doi: 10.1016/j.jcp.2009.02.027 . http://dl.acm.org/citation.cfm?id=1528939.1529237 · Zbl 1273.76356 · doi:10.1016/j.jcp.2009.02.027
[23] Lamb, H.: Hydrodynamics. Dover, New York (1932)
[24] van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[25] Lin, S., Chen, J.: Role played by the interfacial shear in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech. 376, 37–51 (1998) · Zbl 0922.76162 · doi:10.1017/S0022112098002894
[26] Marchandise, E., Remacle, J.: A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows. J. Comput. Phys. 219(2), 780–800 (2006) · Zbl 1189.76343 · doi:10.1016/j.jcp.2006.04.015
[27] Martin, J., Moyce, W.J.: An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. R. Soc. Lond. A 244, 312–324 (1952) · doi:10.1098/rsta.1952.0006
[28] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[29] Pilliod, J., Puckett, E.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199(2), 465–502 (2004) · Zbl 1126.76347 · doi:10.1016/j.jcp.2003.12.023
[30] Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 5838–5866 (2009) · Zbl 1280.76020 · doi:10.1016/j.jcp.2009.04.042
[31] Raessi, M., Pitsch, H.: Modeling interfacial flows characterized by large density ratios with the level set method. Annual Research Brief (2009) · Zbl 1365.76238
[32] Schofield, S., Christon, M.: Effects of element order and interface reconstruction in fem/volume-of-fluid incompressible flow simulation. Int. J. Numer. Methods Fluids (2012). doi: 10.1002/fld.3657 · Zbl 1426.76302
[33] Stewart, P., Lay, N., Sussman, M., Ohta, M.: An improved sharp interface method for viscoelastic and viscous two-phase flows. J. Sci. Comput. 35(1), 43–61 (2008) · Zbl 1203.76120 · doi:10.1007/s10915-007-9173-5
[34] Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968) · Zbl 0184.38503 · doi:10.1137/0705041
[35] Sussman, M.: A second order coupled levelset and volume of fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187, 110–136 (2003) · Zbl 1047.76085 · doi:10.1016/S0021-9991(03)00087-1
[36] Sussman, M.: A parallelized, adaptive algorithm for multiphase flows in general geometries. Comput. Struct. 83, 435–444 (2005) · doi:10.1016/j.compstruc.2004.06.006
[37] Sussman, M., Almgren, A., Bell, J., Colella, P., Howell, L., Welcome, M.: An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148, 81–124 (1999) · Zbl 0930.76068 · doi:10.1006/jcph.1998.6106
[38] Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447–2471 (2009) · Zbl 1387.76107 · doi:10.1137/080732122
[39] Sussman, M., Puckett, E.: A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000) · Zbl 0977.76071 · doi:10.1006/jcph.2000.6537
[40] Sussman, M., Smith, K., Hussaini, M., Ohta, M., Zhi-Wei, R.: A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 221(2), 469–505 (2007) · Zbl 1194.76219 · doi:10.1016/j.jcp.2006.06.020
[41] Wang, Y.: Numerical methods for two-phase jet flow. Ph.D. Thesis, Dept. of Mathematics, Florida State University (2010)
[42] Wang, Y., Simakhina, S., Sussman, M.: A hybrid level set-volume constraint method for incompressible two phase flows. J. Comput. Phys. (2012, in review)
[43] Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335–362 (1979) · Zbl 0416.76002 · doi:10.1016/0021-9991(79)90051-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.