×

zbMATH — the first resource for mathematics

Bubble-enhanced smoothed finite element formulation: a variational multi-scale approach for volume-constrained problems in two-dimensional linear elasticity. (English) Zbl 1352.74451
Summary: This paper presents a bubble-enhanced smoothed finite element formulation for the analysis of volume-constrained problems in two-dimensional linear elasticity. The new formulation is derived based on the variational multi-scale approach in which unequal order displacement-pressure pairs are used for the mixed finite element approximation and hierarchical bubble function is selected for the fine-scale displacement approximation. An area-weighted averaging scheme is employed for the two-scale smoothed strain calculation under the framework of edge-based smoothed FEM. The smoothed fine-scale solution is shown to naturally contain the stress field jump of the smoothed coarse-scale solution across the boundary of edge-based smoothing domain and thus provides the possibility to stabilize the global solution for volume-constrained problems. A global monolithic solution strategy is employed, and the fine-scale solution is solved without the consideration of approximating the strong form of the fine-scale equation. Several numerical examples are analyzed to demonstrate the accuracy of the present formulation.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Liu, A smoothed finite element method for mechanics problems, Computational Mechanics 39 pp 859– (2007) · Zbl 1169.74047 · doi:10.1007/s00466-006-0075-4
[2] Liu, Smoothed Finite Element Methods (2010) · doi:10.1201/EBK1439820278
[3] Chen, A stabilized conforming nodal integration for Galerkin mesh-free methods, International Journal for Numerical Methods in Engineering 50 pp 435– (2001) · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[4] Wu, A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses, Computational Mechanics 50 pp 1– (2012) · Zbl 1312.74048 · doi:10.1007/s00466-011-0665-7
[5] Liu, A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Computers and Structures 87 pp 14– (2009) · doi:10.1016/j.compstruc.2008.09.003
[6] Liu, An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses in solids, Journal of Sound and Vibration 320 pp 1100– (2009) · doi:10.1016/j.jsv.2008.08.027
[7] Nguyen-Xuan, A smoothed finite element method for plate analysis, Computer Methods in Applied Mechanics and Engineering 197 pp 1184– (2008) · Zbl 1159.74434 · doi:10.1016/j.cma.2007.10.008
[8] Wu, An enhanced cell-based smoothed finite element method for the analysis of Reissner-Mindlin plate bending problems involving distorted mesh, International Journal for Numerical Methods in Engineering 95 pp 288– (2013) · Zbl 1352.74452 · doi:10.1002/nme.4506
[9] Nguyen, Selective smoothed finite element method, Tsinghua Science and Technology 12 (5) pp 497– (2007) · doi:10.1016/S1007-0214(07)70125-6
[10] Nguyen-Xuan, Smoothed finite elements: convergence, accuracy and properties, International Journal for Numerical Methods in Engineering 74 pp 175– (2008) · Zbl 1159.74435 · doi:10.1002/nme.2146
[11] Brezzi, Springer Series in Computational Mathematics, in: Mixed and Hybrid Finite Element Methods (1991) · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[12] Zienkiewicz, The Finite Element Method, 3. ed. (1987) · Zbl 0623.65120
[13] Hughes, The Finite Element Method (2000) · Zbl 1191.74002
[14] Belytschko, Nonlinear Finite Elements for Continua and Structures (2001)
[15] Liu, Finite element stabilization matrices - a unification approach, Computer Methods in Applied Mechanics and Engineering 53 pp 13– (1986)
[16] Areias, Stabilized four-node tetrahedron with nonlocal pressure for modeling hyperelastic materials, International Journal for Numerical Methods in Engineering 76 pp 1185– (2008) · Zbl 1195.74157 · doi:10.1002/nme.2357
[17] Hughes, A new finite element formulation for fluid dynamics, V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation, Computer Methods in Applied Mechanics and Engineering 59 pp 85– (1986) · Zbl 0622.76077
[18] Simo, A class of mixed assumed strain methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering 29 pp 1595– (1990) · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[19] Arnold, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis 39 pp 1749– (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[20] Hansbo, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Computer Methods in Applied Mechanics and Engineering 191 pp 1895– (2002) · Zbl 1098.74693 · doi:10.1016/S0045-7825(01)00358-9
[21] Bonet, A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications, Communications in Numerical Methods in Engineering 14 pp 437– (1998) · Zbl 0906.73060 · doi:10.1002/(SICI)1099-0887(199805)14:5<437::AID-CNM162>3.0.CO;2-W
[22] Hauret, Diamond elements: a finite element/discrete-mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity, International Journal for Numerical Methods in Engineering 72 pp 253– (2007) · Zbl 1194.74406 · doi:10.1002/nme.1992
[23] Wriggers, Brick elements for finite deformations based on macro-concepts and on inhomogeneous enhancement, Computer Methods in Applied Sciences 14 pp 33– (2009) · Zbl 1185.74095
[24] Stenberg, Error analysis of some finite element methods for the Stokes problem, Mathematics of Computation 54 pp 495– (1990) · Zbl 0702.65095 · doi:10.1090/S0025-5718-1990-1010601-X
[25] Vidal, Locking in the incompressible limit: pseudo-divergence-free element free Galerkin, Communications in Numerical Methods in Engineering 19 pp 725– (2003) · Zbl 1112.74545 · doi:10.1002/cnm.631
[26] Belytschko, Element-free Galerkin methods, International Journal for Numerical Methods in Engineering 37 pp 229– (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[27] Chen, An improved reproducing kernel particle method for nearly incompressible finite elasticity, Computer Methods in Applied Mechanics and Engineering 181 pp 117– (2000) · Zbl 0973.74088 · doi:10.1016/S0045-7825(99)00067-5
[28] Liu, Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids 20 pp 1081– (1995) · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[29] Auricchio, A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation, Computer Methods in Applied Mechanics and Engineering 197 pp 160– (2007) · Zbl 1169.74643 · doi:10.1016/j.cma.2007.07.005
[30] Ortiz, Maximum-entropy meshfree method for compressible and near-incompressible elasticity, Computer Methods in Applied Mechanics and Engineering 199 pp 1859– (2010) · Zbl 1231.74491 · doi:10.1016/j.cma.2010.02.013
[31] Wu, Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids, Computer Methods in Applied Mechanics and Engineering 200 pp 2991– (2011) · Zbl 1230.74201 · doi:10.1016/j.cma.2011.06.013
[32] Wu, A meshfree-enriched finite element method for compressible and near-incompressible elasticity, International Journal for Numerical Methods in Engineering 90 pp 882– (2012) · Zbl 1242.74174 · doi:10.1002/nme.3349
[33] Babuška, The finite element method with Lagrangian multipliers, Numerische Mathematik 20 pp 179– (1973) · Zbl 0258.65108 · doi:10.1007/BF01436561
[34] Hughes, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petro-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering 59 pp 85– (1986) · Zbl 0622.76077 · doi:10.1016/0045-7825(86)90025-3
[35] Hughes, Finite Elements in Fluids pp 46– (1982)
[36] Hughes, A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering 73 pp 173– (1989) · Zbl 0697.76100 · doi:10.1016/0045-7825(89)90111-4
[37] Brezzi, A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Computer Methods in Applied Mechanics and Engineering 96 pp 117– (1992) · Zbl 0756.76044 · doi:10.1016/0045-7825(92)90102-P
[38] Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale methods, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering 127 pp 387– (1995) · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[39] Hughes, Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and the stabilized methods, SIAM Journal on Numerical Analysis 45 pp 539– (2007) · Zbl 1152.65111 · doi:10.1137/050645646
[40] Franca, Refining the submesh strategy in the two-level finite element method: application to the advection-diffusion equation, International Journal for Numerical Methods in Engineering 39 pp 161– (2002) · Zbl 1016.76047 · doi:10.1002/fld.219
[41] Araya, Stabilized finite element methods based on multiscale enrichement for the Stokes problem, SIAM Journal on Numerical Analysis 44 pp 322– (2006) · Zbl 1121.65116 · doi:10.1137/050623176
[42] Franca, Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions, Computer Methods in Applied Mechanics and Engineering 194 pp 3006– (2005) · Zbl 1091.76034 · doi:10.1016/j.cma.2004.07.029
[43] Farhat, The discontinuous enrichment method for multiscale analysis, Computer Methods in Applied Mechanics and Engineering 192 pp 3195– (2003) · Zbl 1054.76048 · doi:10.1016/S0045-7825(03)00344-X
[44] Baiges, A variational multiscale method with subscales on the element boundaries for the Helmholtz equation, International Journal for Numerical Methods in Engineering 93 pp 664– (2012) · Zbl 1352.65467 · doi:10.1002/nme.4406
[45] Wu, Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments, Interaction and Multiscale Mechanics 6 (2) pp 83– (2013) · doi:10.12989/imm.2013.6.2.083
[46] Hauke, variational subgrid scale formulations for the advection-diffusion-reaction equation, Computer Methods in Applied Mechanics and Engineering 190 pp 6847– (2001) · Zbl 0996.76074 · doi:10.1016/S0045-7825(01)00262-6
[47] Masud, A multiscale finite element method for the incompressible Navior-Stokes equations, Computer Methods in Applied Mechanics and Engineering 195 pp 1750– (2006) · Zbl 1178.76233 · doi:10.1016/j.cma.2005.05.048
[48] Liu, A variational multiscale stabilized finite element method for the Stokes flow problem, Finite Elements in Analysis and Design 42 pp 580– (2006) · doi:10.1016/j.finel.2005.11.006
[49] Oberai, A multiscale finite element method for the Helmholtz equation, Computer Methods in Applied Mechanics and Engineering 154 pp 281– (1998) · Zbl 0937.65119 · doi:10.1016/S0045-7825(97)00130-8
[50] Harari, Multiscale finite elements for acoustics: continuous, discontinuous, and stabilized methods, International Journal for Numerical Methods in Engineering 6 pp 511– (2008)
[51] Masud, A stabilized mixed finite element method for nearly incompressible elasticity, Journal of Applied Mechanics 72 pp 711– (2005) · Zbl 1111.74548 · doi:10.1115/1.1985433
[52] Masud, A variational multiscale method for computational inelasticity: application to superelasticity in shape memory alloys, Computer Methods in Applied Mechanics and Engineering 195 pp 4512– (2006) · Zbl 1123.74046 · doi:10.1016/j.cma.2005.09.014
[53] Nakshatrala, On finite element formulations for nearly incompressible linear elasticity, Computational Mechanics 41 pp 547– (2008) · Zbl 1162.74472 · doi:10.1007/s00466-007-0212-8
[54] Bochev, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM Journal on Numerical Analysis 44 pp 82– (2006) · Zbl 1145.76015 · doi:10.1137/S0036142905444482
[55] Franca, Approximation of the Stokes problem by residual-free macro bubbles, East-West Journal of Mathematics 4 pp 265– (1996) · Zbl 0869.76038
[56] Whiting, A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis, International Journal for Numerical Methods in Fluids 35 pp 93– (2001) · Zbl 0990.76048 · doi:10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
[57] Timoshenko, Theory of Elasticity (1970)
[58] Lovadina, On the enhanced strain technique for elasticity problems, Computers and Structures 81 pp 777– (2003) · doi:10.1016/S0045-7949(02)00412-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.