×

zbMATH — the first resource for mathematics

A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. (English) Zbl 1352.74022
Summary: The numerical modeling of dynamic failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies and demands the formulation of additional branching criteria. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. Following our recent works on quasi-static modeling of phase-field-type brittle fracture, we propose in this paper a computational framework for diffusive fracture for dynamic problems that allows the simulation of complex evolving crack topologies. It is based on the introduction of a local history field that contains a maximum reference energy obtained in the deformation history, which may be considered as a measure of the maximum tensile strain in the history. This local variable drives the evolution of the crack phase field. Its introduction provides a very transparent representation of the balance equation that governs the diffusive crack topology. In particular, it allows for the construction of a very robust algorithmic treatment for elastodynamic problems of diffusive fracture. Here, we extend the recently proposed operator split scheme from quasi-static to dynamic problems. In a typical time step, it successively updates the history field, the crack phase field, and finally the displacement field. We demonstrate the performance of the phase field formulation of fracture by means of representative numerical examples, which show the evolution of complex crack patterns under dynamic loading.

MSC:
74A45 Theories of fracture and damage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ravi-Chandar, An experimental investigation into dynamic fracture: I. Crack initiation and arrest, International Journal of Fracture 25 pp 247– (1984) · doi:10.1007/BF00963460
[2] Ravi-Chandar, An experimental investigation into dynamic fracture: II. Microstructural aspects, International Journal of Fracture 26 pp 65– (1984) · doi:10.1007/BF01152313
[3] Ravi-Chandar, An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching, International Journal of Fracture 26 pp 141– (1984) · doi:10.1007/BF01157550
[4] Ravi-Chandar, An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagation cracks, International Journal of Fracture 26 pp 189– (1984) · doi:10.1007/BF01140627
[5] Ramulu, Mechanic of crack curving and branching-a dynamic fracture analysis, International Journal of Fracture Mechanics 27 pp 187– (1985) · doi:10.1007/BF00017967
[6] Kalthoff, Impact Loading and Dynamic Behavior of Materials pp 185– (1987)
[7] Miehe, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering 199 pp 2765– (2010) · Zbl 1231.74022 · doi:10.1016/j.cma.2010.04.011
[8] Miehe, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, International Journal of Numerical Methods in Engineering 83 pp 1273– (2010) · Zbl 1202.74014 · doi:10.1002/nme.2861
[9] Griffith, The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society London A 221 pp 163– (1921) · doi:10.1098/rsta.1921.0006
[10] Freund, Dynamic Fracture Mechanics (1990) · Zbl 0712.73072 · doi:10.1017/CBO9780511546761
[11] Francfort, Revisiting brittle fracture as an energy minimization problem, Journal of the Mechanics and Physics of Solids 46 pp 1319– (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[12] Bourdin, The Variational Approach to Fracture (2008) · Zbl 1176.74018 · doi:10.1007/978-1-4020-6395-4
[13] Dal Maso, A model for the quasistatic growth of brittle fractures: existence and approximation results, Archive for Rational Mechanics and Analysis 162 pp 101– (2002) · Zbl 1042.74002 · doi:10.1007/s002050100187
[14] Buliga, Energy minimizing brittle crack propagation, Journal of Elasticity 52 pp 201– (1999) · Zbl 0947.74055 · doi:10.1023/A:1007545213010
[15] Mumford, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics 42 pp 577– (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[16] Ambrosio, Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma\)-convergence, Communications on Pure and Applied Mathematics 43 pp 999– (1990) · Zbl 0722.49020 · doi:10.1002/cpa.3160430805
[17] Dal Maso, An Introduction to \(\Gamma\)-Convergence (1993) · doi:10.1007/978-1-4612-0327-8
[18] Braides, Approximation of Free Discontinuity Problems (1998) · Zbl 0909.49001 · doi:10.1007/BFb0097344
[19] Braides, \(\Gamma\)-Convergence for Beginners (2002) · doi:10.1093/acprof:oso/9780198507840.001.0001
[20] Bourdin, A time-discrete model for dynamic fracture based on crack regularization, International Journal of Fracture 168 pp 133– (2011) · Zbl 1283.74055 · doi:10.1007/s10704-010-9562-x
[21] Hakim, Laws of crack motion and phase-field models of fracture, Journal of the Mechanics and Physics of Solids 57 pp 342– (2009) · Zbl 1421.74089 · doi:10.1016/j.jmps.2008.10.012
[22] Karma, Phase-field model of mode III dynamic fracture, Physical Review Letters 92 pp 8704.045501– (2001)
[23] Eastgate, Fracture in mode I using a conserved phase-field model, Physical Review E 65 pp 036117-1-10– (2002) · doi:10.1103/PhysRevE.65.036117
[24] Capriz, Continua with Microstructure (1989) · doi:10.1007/978-1-4612-3584-2
[25] Mariano, Multifield theories in mechanics of solids, Advances in Applied Mechanics 38 pp 1– (2001) · doi:10.1016/S0065-2156(02)80102-8
[26] Frémond, Non-smooth Thermomechanics (2002)
[27] Miehe, A multi-field incremental variational framework for gradient-extended standard dissipative solids, Journal of the Mechanics and Physics in Solids 59 pp 898– (2011) · Zbl 1270.74022 · doi:10.1016/j.jmps.2010.11.001
[28] Frémond, Damage, gradient of damage and principle of virtual power, International Journal of Solids and Structures 33 pp 1083– (1996) · Zbl 0910.73051 · doi:10.1016/0020-7683(95)00074-7
[29] Peerlings, Gradient enhanced damage for quasi-brittle materials, International Journal for Numerical Methods in Engineering 39 pp 3391– (1996) · Zbl 0882.73057 · doi:10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
[30] Xu, Numerical simulations of fast crack growth in brittle solids, Journal of the Mechanics and Physics of Solids 42 pp 1397– (1994) · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
[31] Camacho, Computational modelling of impact damage in brittle materials, International Journal of Solids and Structures 33 pp 2899– (1996) · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[32] Pandolfi, An efficient adaptive procedure for three-dimensional fragmentation simulations, Engineering with Computers 18 pp 148– (2002) · Zbl 01993863 · doi:10.1007/s003660200013
[33] Gürses, A computational framework of three-dimensional configurational-force-driven brittle crack propagation, Computer Methods in Applied Mechanics and Engineering 198 pp 1413– (2009) · Zbl 1227.74070 · doi:10.1016/j.cma.2008.12.028
[34] Miehe, A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment, International Journal for Numerical Methods in Engineering 72 pp 127– (2007) · Zbl 1194.74444 · doi:10.1002/nme.1999
[35] Belytschko, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, International Journal for Numerical Methods in Engineering 58 pp 1873– (2003) · Zbl 1032.74662 · doi:10.1002/nme.941
[36] Song, A method for dynamic crack and shear band propagation with phantom nodes, International Journal for Numerical Methods in Engineering 67 pp 868– (2006) · Zbl 1113.74078 · doi:10.1002/nme.1652
[37] Song, Cracking node method for dynamic fracture with finite elements, International Journal for Numerical Methods in Engineering 77 pp 360– (2009) · Zbl 1155.74415 · doi:10.1002/nme.2415
[38] Song, A comparative study on finite element methods for dynamic fracture, Computer Methods in Applied Mechanics and Engineering 42 pp 239– (2008) · Zbl 1160.74048
[39] Fagerström, Theory and numerics for finite deformation fracture modelling using strong discontinuities, International Journal for Numerical Methods in Engineering 66 pp 911– (2006) · Zbl 1110.74815 · doi:10.1002/nme.1573
[40] Armero, Numerical simulation of dynamic fracture using finite elements with embedded discontinuities, International Journal of Fracture 160 pp 119– (2009) · Zbl 1273.74422 · doi:10.1007/s10704-009-9413-9
[41] Linder, Finite elements with embedded branching, Finite Elements in Analysis and Design 45 pp 280– (2009) · doi:10.1016/j.finel.2008.10.012
[42] Radovitzky, Error estimation and adaptive meshing in strongly nonlinear dynamic problems, Computer Methods in Applied Mechanics and Engineering 172 pp 203– (1999) · Zbl 0957.74058 · doi:10.1016/S0045-7825(98)00230-8
[43] Kane, Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems, International Journal for Numerical Methods in Engineering 49 pp 1295– (2000) · Zbl 0969.70004 · doi:10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
[44] Miehe, Comparison of two algorithms for the computation of fourth-order isotropic tensor functions, Computers & Structures 66 pp 37– (1998) · Zbl 0929.74128 · doi:10.1016/S0045-7949(97)00073-4
[45] Miehe, Algorithms for computation of stresses and elasticity moduli in terms of Seth-Hill’s family of generalized strain tensors, Communications in Numerical Methods in Engineering 17 pp 337– (2001) · Zbl 1049.74011 · doi:10.1002/cnm.404
[46] Gross, Fracture Mechanics (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.