×

Block relations in formal fuzzy concept analysis. (English) Zbl 1352.68232

Summary: One of the main problems in formal concept analysis (especially in fuzzy setting) is to reduce a concept lattice of a formal context to appropriate size to make it graspable and understandable. A natural way to do it is to substitute the formal context by its block relation which is equivalent to factorization of the concept lattice by a complete tolerance. We generalize known results on the correspondence of block relations of formal contexts and complete tolerances on concept lattices to fuzzy setting and we provide an illustrative example of using block relations to reduce the size of a concept lattice.

MSC:

68T30 Knowledge representation
06A15 Galois correspondences, closure operators (in relation to ordered sets)
06B75 Generalizations of lattices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arnauld, A.; Nicole, P., Logic or the art of thinking, (1863), Cambridge University Press, [La Logique, ou L’art de Penser, 1662]
[2] Belohlavek, R., Fuzzy Galois connections, Math. Log. Q., 45, 4, 497-504, (1999) · Zbl 0938.03079
[3] Belohlavek, R., Fuzzy closure operators, J. Math. Anal. Appl., 262, 2, 473-489, (Oct. 2001)
[4] Belohlavek, R., Lattices of fixed points of fuzzy Galois connections, Math. Log. Q., 47, 1, 111-116, (2001) · Zbl 0976.03025
[5] Belohlavek, R., Concept lattices and order in fuzzy logic, Ann. Pure Appl. Log., 128, 1-3, 277-298, (2004) · Zbl 1060.03040
[6] Belohlavek, R., Fuzzy Galois connections, Math. Log. Q., 45, 6, 497-504, (1999) · Zbl 0938.03079
[7] Belohlavek, R., Similarity relations in concept lattices, J. Log. Comput., 10, 6, 823-845, (2000) · Zbl 0972.06008
[8] Belohlavek, R., Fuzzy relational systems: foundations and principles, (2002), Kluwer Academic Publishers Norwell, USA · Zbl 1067.03059
[9] Belohlavek, R.; Konecny, J., Concept lattices of isotone vs. antitone Galois connections in graded setting: mutual reducibility revisited, Inf. Sci., 199, 133-137, (2012) · Zbl 1248.06006
[10] Belohlavek, R.; Konecny, J., Row and column spaces of matrices over residuated lattices, Fundam. Inform., 115, 4, 279-295, (2012) · Zbl 1241.06011
[11] Belohlavek, R.; Outrata, J.; Vychodil, V., Direct factorization by similarity of fuzzy concept lattices by factorization of input data, (Yahia, S. B.; Nguifo, E. M.; Belohlavek, R., CLA, Lecture Notes in Computer Science, vol. 4923, (2006), Springer), 68-79 · Zbl 1133.68442
[12] Belohlavek, R.; Funiokova, T., Fuzzy interior operators, Int. J. Gen. Syst., 33, 415-430, (2004) · Zbl 1067.03058
[13] Burusco, A.; Fuentes-Gonzáles, R., The study of the L-fuzzy concept lattice, Ann. Pure Appl. Logic, I, 3, 209-218, (1994) · Zbl 0827.06004
[14] Carpineto, C.; Romano, G., Concept data analysis: theory and applications, (2004), John Wiley & Sons · Zbl 1083.68117
[15] Czédli, G., Factor lattices by tolerances, Acta Sci. Math., 44, 35-42, (1982) · Zbl 0484.06010
[16] Ganter, B.; Wille, R., Formal concept analysis - mathematical foundations, (1999), Springer · Zbl 0909.06001
[17] Georgescu, G., Fuzzy power structures, Arch. Math. Log., 47, 3, 233-261, (2008) · Zbl 1156.03051
[18] Georgescu, G.; Popescu, A., Non-dual fuzzy connections, Arch. Math. Log., 43, 8, 1009-1039, (2004) · Zbl 1060.03042
[19] Goguen, J. A., L-fuzzy sets, J. Math. Anal. Appl., 18, 1, (1967) · Zbl 0145.24404
[20] Goguen, J. A., The logic of inexact concepts, Synthese, 19, 3-4, 325-373, (1969) · Zbl 0184.00903
[21] Jaoua, A.; Alvi, F.; Elloumi, S.; Yahia, S. B., Galois connection in fuzzy binary relations, applications for discovering association rules and decision making, (RelMiCS, (2000)), 141-149
[22] Kneale, W. C.; Kneale, M., The development of logic, (1962), Oxford University Press USA · Zbl 0100.00807
[23] Kohout, L. J.; Bandler, W., Relational-product architectures for information processing, Inf. Sci., 37, 1-3, 25-37, (1985)
[24] Konecny, J.; Krupka, M., Complete relations on fuzzy complete lattices, preprint · Zbl 1426.06004
[25] Konecny, J.; Krupka, M., Block relations in fuzzy setting, (Proceedings of The Eighth International Conference on Concept Lattices and Their Applications, Nancy, France, October 17-20, (2011)), (2011)
[26] Konecny, J.; Ojeda-Aciego, M., Homogeneous L-bonds and heterogeneous L-bonds, Int. J. Gen. Syst., (2016), in press · Zbl 1365.68415
[27] Krajci, S., A generalized concept lattice, Log. J. IGPL, 13, 5, 543-550, (2005) · Zbl 1088.06005
[28] Meschke, C., Approximations in concept lattices, (Kwuida, L.; Sertkaya, B., Formal Concept Analysis, Lecture Notes in Computer Science, vol. 5986, (2010), Springer Berlin/Heidelberg), 104-123 · Zbl 1274.06022
[29] Pollandt, S., Fuzzy begriffe: formale begriffsanalyse von unscharfen daten, (1997), Springer-Verlag Berlin-Heidelberg · Zbl 0870.06008
[30] Saminger-Platz, S.; Klement, E. P.; Mesiar, R., On extensions of triangular norms on bounded lattices, Indag. Math., 19, 1, 135-150, (2008) · Zbl 1171.03011
[31] Wille, R., Complete tolerance relations of concept lattices, (1983), Fachber. Mathematik, TH, Preprint. Fachbereich Mathematik. Technische Hochschule Darmstadt
[32] Wille, R., Complete tolerance relations of concept lattices, (Eigenthaler, G.; etal., Contributions to General Algebra, vol. 3, (1985), Hölder-Pichler-Tempsky Wien), 397-415
[33] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 3, 338-353, (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.