×

zbMATH — the first resource for mathematics

CutFEM: discretizing geometry and partial differential equations. (English) Zbl 1352.65604
Summary: We discuss recent advances on robust unfitted finite element methods on cut meshes. These methods are designed to facilitate computations on complex geometries obtained, for example, from computer-aided design or image data from applied sciences. Both the treatment of boundaries and interfaces and the discretization of PDEs on surfaces are discussed and illustrated numerically.

MSC:
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antiga, MS&A pp 123– (2009)
[2] Dassi, Efficient geometric reconstruction of complex geological structures, Mathematics and Computers in Simulation (2014)
[3] Hughes, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering 194 (39-41) pp 4135– (2005) · Zbl 1151.74419
[4] Nitsche, Über ein Variationsprinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem AbhandlungenMathematische Seminar der Universität Hamburg 36 pp 9– (1971) · Zbl 0229.65079
[5] Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Computer Methods in Applied Mechanics and Engineering 191 (47-48) pp 5537– (2002) · Zbl 1035.65125
[6] Hansbo, A finite element method on composite grids based on Nitsche’s method, ESAIM Mathematical Modelling and Numerical Analysis 37 (3) pp 495– (2003) · Zbl 1031.65128
[7] Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Computer Methods in Applied Mechanics and Engineering 193 (33-35) pp 3523– (2004) · Zbl 1068.74076
[8] Hansbo, Nitsche’s method for interface problems in computational mechanics, GAMM-Mitteilungen 28 (2) pp 183– (2005) · Zbl 1179.65147
[9] Becker, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity, Computer Methods in Applied Mechanics and Engineering 198 (41- 44) pp 3352– (2009) · Zbl 1230.74169
[10] Dolbow, An efficient finite element method for embedded interface problems, International Journal for Numerical Methods in Engineering 78 (2) pp 229– (2009) · Zbl 1183.76803
[11] Harari, Analysis of an efficient finite element method for embedded interface problems, Computational Mechanics 46 (1) pp 205– (2010) · Zbl 1190.65172
[12] Burman, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Applied Numerical Mathematics 64 (4) pp 328– (2011) · Zbl 1316.65099
[13] Schott, A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 276 pp 233– (2014) · Zbl 1423.76273
[14] Lew, A discontinuous-Galerkin-based immersed boundary method, International Journal for Numerical Methods in Engineering 76 (4) pp 427– (2008) · Zbl 1195.76258
[15] Rangarajan, A discontinuous-Galerkin-based immersed boundary method with non-homogeneous boundary conditions and its application to elasticity, Computer Methods in Applied Mechanics and Engineering 198 (17-20) pp 1513– (2009) · Zbl 1227.74091
[16] Johansson, A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary, Numerical Mathematics 123 (4) pp 607– (2013) · Zbl 1269.65126
[17] Haslinger, A new fictitious domain approach inspired by the extended finite element method, SIAM Journal on Numerical Analysis 47 (2) pp 1474– (2009) · Zbl 1205.65322
[18] Burman, Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Computer Methods in Applied Mechanics and Engineering 199 (41-44) pp 2680– (2010) · Zbl 1231.65207
[19] Nicaise, Optimal convergence analysis for the extended finite element method, International Journal for Numerical Methods in Engineering 86 (4-5) pp 528– (2011) · Zbl 1216.74029
[20] Tur, Imposing Dirichlet boundary conditions in hierarchical cartesian meshes by means of stabilized Lagrange multipliers, International Journal for Numerical Methods in Engineering 98 (6) pp 399– (2014) · Zbl 1352.65556
[21] Annavarapu, A robust Nitsche’s formulation for interface problems, Computer Methods in Applied Mechanics and Engineering 225-228 pp 44– (2012) · Zbl 1253.74096
[22] Barrau, A robust variant of NXFEM for the interface problem, Comptes Rendus Mathematique 350 (15-16) pp 789– (2012) · Zbl 1257.65066
[23] Juntunen, Nitsche’s method for general boundary conditions, Mathematics of Computation 78 (267) pp 1353– (2009) · Zbl 1198.65223
[24] Barrau N Généralisation de la méthode NXFEM pour la discrétisation de problèmes d’interface elliptiques Ph.D. Thesis 2013
[25] Elliott, Finite element analysis for a coupled bulk-surface partial differential equation, IMA Journal of Numerical Analysis 33 (2) pp 377– (2013) · Zbl 1271.65138
[26] Olshanskii, A finite element method for elliptic equations on surfaces, SIAM Journal on Numerical Analysis 47 (5) pp 3339– (2009) · Zbl 1204.58019
[27] Burman, Ghost penalty, Comptes Rendus Mathematique 348 (21-22) pp 1217– (2010) · Zbl 1204.65142
[28] Hansbo, A cut finite element method for a Stokes interface problem, Applied Numerical Mathematics 85 pp 90– (2014) · Zbl 1299.76136
[29] Massing, A stabilized Nitsche fictitious domain method for the Stokes problem, Journal of Scientific Computing 61 (3) pp 604– (2014) · Zbl 1417.76028
[30] Burman, Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem, ESAIM Mathematical Modelling and Numerical Analysis 48 (3) pp 859– (2014) · Zbl 1416.65437
[31] Cattaneo, Stabilized extended finite elements for the approximation of saddle point problems with unfitted interfaces, Calcolo (2014)
[32] Burman, An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes, Computer Methods in Applied Mechanics and Engineering 279 (1) pp 479– (2014)
[33] Massing A Larson MG Logg A Rognes ME An overlapping mesh finite element method for a fluid-structure interaction problem. ArXiv e-prints
[34] Juntunen, A posteriori estimates for Nitsche’s method with discontinuous material parameters, Presentation at ENUMATH (2013)
[35] Burman, Frontiers in Numerical Analysis-Durham 2010 pp 227– (2012)
[36] Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients, Computational Methods in Applied Mathematics 3 (1) pp 76– (2003) · Zbl 1039.65079
[37] Burman, A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems, SIAM Journal on Numerical Analysis 44 (4) pp 1612– (2006) · Zbl 1125.65113
[38] Burman E Hansbo P Larson MG A stable cut finite element method for partial differential equations on surfaces: the Laplace-Beltrami operator. ArXiv e-prints · Zbl 1425.65152
[39] Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2. ed. (1999) · Zbl 0973.76003
[40] Chern, A coupling interface method for elliptic interface problems, Journal of Computational Physics 225 (2) pp 2138– (2007) · Zbl 1123.65108
[41] Akio, An efficient method of triangulating equi-valued surfaces by using tetrahedral cells, IEICE Transactions on Information and Systems 74 (1) pp 214– (1991)
[42] Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book (2012) · Zbl 1247.65105
[43] Alnaes, Unified form Language: a domain-specific language for weak formulations of partial differential equations, ACM Transactions on Mathematical Software 40 (2) pp 9:1– (2014) · Zbl 1308.65175
[44] Kirby, A compiler for variational forms, ACM Transactions on Mathematical Software 32 (3) pp 417– (2006) · Zbl 05458453
[45] Logg, Automated Solution of Differential Equations by the Finite Element Method pp 227– (2012)
[46] Alnaes, Automated Solution of Differential Equations by the Finite Element Method pp 283– (2012)
[47] Massing, Efficient implementation of finite element methods on non-matching and overlapping meshes in three dimensions, SIAM Journal on Scientific Computing 35 (1) pp C23– (2013) · Zbl 1264.65194
[48] Massing, A stabilized Nitsche overlapping mesh method for the Stokes problem, Numerical Mathematics 128 (1) pp 73– (2014) · Zbl 1426.76289
[49] GETFEM++, software package http://download.gna.org/getfem/html/homepage/
[50] LIFEV, software package http://www.lifev.org/
[51] Engwer, Advances in Dune pp 89– (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.