zbMATH — the first resource for mathematics

Adaptive reconnection-based arbitrary Lagrangian Eulerian method. (English) Zbl 1352.65602
Summary: We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. In the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way. In the current paper we present a new adaptive ReALE method, A-ReALE, that is based on the following design principles. First, a monitor function (or error indicator) based on the Hessian of some flow parameter(s) is utilized. Second, an equi-distribution principle for the monitor function is used as a criterion for adapting the mesh. Third, a centroidal Voronoi tessellation is used to adapt the mesh. Fourth, we scale the monitor function to avoid very small and large cells and then smooth it to permit the use of theoretical results related to weighted centroidal Voronoi tessellation. In the A-ReALE method, both number of cells and their locations are allowed to change at the rezone stage on each time step. The number of generators at each time step is chosen to guarantee the required spatial resolution in regions where monitor function reaches its maximum value. We present all details required for implementation of new adaptive A-ReALE method and demonstrate its performance in comparison with standard ReALE method on series of numerical examples.

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
ReALE; bamg
Full Text: DOI
[1] Alauzet, F., High-order methods and mesh adaptation for Euler equations, Int. J. Numer. Methods Fluids, 56, 8, 1069-1076, (2008) · Zbl 1151.76016
[2] Aurenhammer, F., Voronoi diagrams - a survey of fundamental geometric data structures, ACM Comput. Surv., 23, 3, 345-405, (1991)
[3] Barth, T. J., Numerical methods for gasdynamic systems on unstructured meshes, (Kroner, D.; Ohlberger, M.; Rohde, C., An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Proceedings of the International School on Theory and Numerics for Conservation Laws, Lecture Notes in Computational Science and Engineering, (1997), Springer Berlin), 195-284 · Zbl 0969.76040
[4] Belme, Anca; Dervieux, Alain; Alauzet, Frédéric, Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, J. Comput. Phys., 231, 19, 6323-6348, (2012) · Zbl 1284.65126
[5] Bo, W.; Shashkov, M., R-adaptive reconnection-based arbitrary Lagrangian Eulerian method - R-reale, J. Math. Study, 48, 2, 125-167, (2015) · Zbl 1363.65154
[6] Breil, J.; Harribey, T.; Maire, P.-H.; Shashkov, M., A multi-material reale method with MOF interface reconstruction, Comput. Fluids, 83, 115-125, (2013) · Zbl 1290.76094
[7] Budd, Chris J.; Huang, Weizhang; Russell, Robert D., Adaptivity with moving grids, Acta Numer., 18, 111-241, (2009) · Zbl 1181.65122
[8] Carré, G.; Del Pino, S.; Després, Bruno; Labourasse, Emmanuel, A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 14, 5160-5183, (2009) · Zbl 1168.76029
[9] Cheng, Siu-Wing; Dey, Tamal Krishna; Shewchuk, Jonathan Richard, Delaunay mesh generation, (2012), CRC Press · Zbl 1298.65187
[10] Dorfi, E. A.; Drury, L. O’C., Simple adaptive grids for 1-D initial value problems, J. Comput. Phys., 69, 175-195, (1987) · Zbl 0607.76041
[11] Du, Qiang; Faber, Vance; Gunzburger, Max, Centroidal Voronoi tessellations: applications and algorithms, SIAM Rev., 41, 4, 637-676, (1999) · Zbl 0983.65021
[12] Du, Qiang; Gunzburger, Max; Ju, Lili, Advances in studies and applications of centroidal Voronoi tessellations, Numer. Math., Theory Methods Appl., 3, 2, 119-142, (2010) · Zbl 1224.52032
[13] Du, Qiang; Wang, Desheng, Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations, Int. J. Numer. Methods Eng., 56, 9, 1355-1373, (2003) · Zbl 1106.74431
[14] Du, Qiang; Wang, Desheng, Recent progress in robust and quality Delaunay mesh generation, J. Comput. Appl. Math., 195, 1, 8-23, (2006) · Zbl 1096.65016
[15] Dukowicz, John K.; Kodis, John W., Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations, SIAM J. Sci. Stat. Comput., 8, 3, 305-321, (1987) · Zbl 0644.76085
[16] Frey, Pascal Jean; Marechal, Jean, Fast adaptive quadtree mesh generation, (7th International Meshing Roundtable, (1998)), 211-224, Citeseer
[17] Gersho, Allen, Asymptotically optimal block quantization, IEEE Trans. Inf. Theory, 25, 4, 373-380, (1979) · Zbl 0409.94013
[18] Grandy, J., Conservative remapping and region overlays by intersecting arbitrary polyhedra, J. Comput. Phys., 148, 2, 133-166, (1999) · Zbl 0932.76073
[19] Gruber, Peter M., Optimum quantization and its applications, Adv. Math., 186, 2, 456-497, (2004) · Zbl 1062.94012
[20] Harribey, T.; Breil, J.; Maire, P.-H.; Shashkov, M., A swept-intersection-based remapping method in a reale framework, Int. J. Numer. Methods Fluids, 72, 697-708, (2013)
[21] Thibault Harribey; Breil, Jérôme; Maire, Pierre-Henri; Shashkov, Mikhail, A swept-intersection-based remapping method in a reale framework, Int. J. Numer. Methods Fluids, 72, 6, 697-708, (2013) · Zbl 1290.76094
[22] Frédéric Hecht, BAMG: bi-dimensional anisotropic mesh generator. Website: http://www-rocq1.inria.fr/gamma/cdrom/www/bamg/eng.htm, 1998.
[23] Hirt, C.; Amsden, A.; Cook, J. J.L., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 3, 227-253, (1974) · Zbl 0292.76018
[24] Huang, Weizhang; Russell, Robert D., Adaptive moving mesh methods, (2010), Springer · Zbl 1227.65090
[25] Igra, O.; Falcovitz, J.; Reichenbach, H.; Heilig, W., Experimental and numerical study of the interaction between a planar shock wave and a square cavity, J. Fluid Mech., 313, 1, 105-130, (1996)
[26] Ju, Lili; Du, Qiang; Gunzburger, Max, Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations, Parallel Comput., 28, 10, 1477-1500, (2002) · Zbl 1014.68202
[27] Ju, Lili; Gunzburger, Max; Zhao, Weidong, Adaptive finite element methods for elliptic PDEs based on conforming centroidal Voronoi-Delaunay triangulations, SIAM J. Sci. Comput., 28, 6, 2023-2053, (2006) · Zbl 1126.65099
[28] Kamm, James R.; Timmes, F. X., On efficient generation of numerically robust sedov solutions, Astrophys. J. Suppl. Ser., (2007), submitted for publication
[29] Kucharık, M.; Shashkov, M.; Wendroff, B., An efficient linearity-and-bound-preserving remapping methods, J. Comput. Phys., 188, 462-471, (2003) · Zbl 1022.65009
[30] Lipnikov, K.; Shashkov, M., The error-minimization-based strategy for moving mesh methods, Commun. Comput. Phys., 1, 1, 53-80, (2006) · Zbl 1115.76374
[31] Liu, Yang; Wang, Wenping; Lévy, Bruno; Sun, Feng; Yan, Dong-Ming; Lu, Lin; Yang, Chenglei, On centroidal Voronoi tessellation-energy smoothness and fast computation, ACM Trans. Graph., 28, 4, 101, (2009)
[32] Löhner, Rainald, An adaptive finite element scheme for transient problems in CFD, Comput. Methods Appl. Mech. Eng., 61, 3, 323-338, (1987) · Zbl 0611.73079
[33] Löhner, Rainald, Applied CFD techniques. an introduction based on finite element methods, (2001), Wiley · Zbl 1136.76300
[34] Loubère, R.; Maire, P.-H.; Shashkov, M., Reale: a reconnection arbitrary-Lagrangian-Eulerian method in cylindrical geometry, Comput. Fluids, 46, 1, 59-69, (2011) · Zbl 1305.76066
[35] Loubère, R.; Maire, P.-H.; Shashkov, M.; Breil, J.; Galera, S., Reale: a reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys., 229, 12, 4724-4761, (2010) · Zbl 1305.76067
[36] MacQueen, James, Some methods for classification and analysis of multivariate observations, (Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, California, USA, vol. 1, (1967)), 281-297
[37] Maire, P.-H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys., 228, 7, 2391-2425, (2009) · Zbl 1156.76434
[38] Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Ovadia, Jean, A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 4, 1781-1824, (2007) · Zbl 1251.76028
[39] Hoa Nguyen; Burkardt, John; Gunzburger, Max; Ju, Lili; Saka, Yuki, Constrained CVT meshes and a comparison of triangular mesh generators, Comput. Geom., 42, 1, 1-19, (2009) · Zbl 1152.65035
[40] Hoa Nguyen; Gunzburger, Max; Ju, Lili; Burkardt, John, Adaptive anisotropic meshing for steady convection-dominated problems, Comput. Methods Appl. Mech. Eng., 198, 37, 2964-2981, (2009) · Zbl 1229.76055
[41] Okabe, A.; Boots, B.; Sugihara, K.; Nok Chiu, S. N., Spatial tessellations: concepts and applications of Voronoi diagrams, Wiley Series in Probability and Statistics, (2000) · Zbl 0946.68144
[42] Del Pino, Stéphane, Metric-based mesh adaptation for 2D Lagrangian compressible flows, J. Comput. Phys., 230, 5, 1793-1821, (2011) · Zbl 1391.76536
[43] Quinn, Jonathan; Sun, Feng; Langbein, Frank C.; Lai, Yu-Kun; Wang, Wenping; Martin, Ralph R., Improved initialisation for centroidal Voronoi tessellation and optimal Delaunay triangulation, Comput. Aided Des., 44, 11, 1062-1071, (2012)
[44] Shashkov, M. Yu.; Solovjov, A. V., A generalization of the notion of Dirichlet cell for non-convex domain, (1990), Keldysh Institute of Applied Mathematics, USSR Academy of Sciences Moscow, Russia, Technical report, preprint No. 32 (in Russian)
[45] Shashkov, M. Yu.; Solovjov, A. V., Numerical simulation of two-dimensional flows by the free-Lagrangian flow simulations, (1991), Mathematisches Institut, Technische Universität München, available at:
[46] Sod, G. A., Numerical methods in fluid dynamics, Initial and Initial Boundary-Value Problems, (1985), Cambridge University Press · Zbl 0592.76001
[47] Starinshak, D. P.; Owen, J. M.; Johnson, J. N., A new parallel algorithm for constructing Voronoi tessellations from distributed input data, Comput. Phys. Commun., 185, 3204-3214, (2014) · Zbl 1360.65076
[48] Tang, H.; Tang, T., Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 41, 2, 487-515, (2003) · Zbl 1052.65079
[49] Tang, Hua-Zhong, A moving mesh method for the Euler flow calculations using a directional monitor function, Commun. Comput. Phys., 1, 656-676, (2006) · Zbl 1115.76362
[50] Tournois, Jane; Alliez, Pierre; Devillers, Olivier, 2D centroidal Voronoi tessellations with constraints, Numer. Math., Theory Methods Appl., 3, 2, (2010) · Zbl 1224.65053
[51] Vilar, François, A high-order discontinuous Galerkin discretization for solving two-dimensional Lagrangian hydrodynamics, (November 2012), Université Sciences et Technologies Bordeaux I, Theses
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.