×

zbMATH — the first resource for mathematics

A linearized compact difference scheme for a class of nonlinear delay partial differential equations. (English) Zbl 1352.65270
Summary: A linearized compact difference scheme is presented for a class of nonlinear delay partial differential equations with initial and Dirichlet boundary conditions. The unique solvability, unconditional convergence and stability of the scheme are proved. The convergence order is \(O(\tau^2+h^4)\) in \(L_\infty\) norm. Finally, a numerical example is given to support the theoretical results.

MSC:
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Perestyuk, M. O.; Chernikova, O. S., Some moderen aspects of the theory of impulsive differential equations, Ukrainian Math. J., 60, 1, (2008) · Zbl 1164.34300
[2] Rezounenko, Alexander V.; Wu, J. H., A non-local PDE model for population dynamics with state-selective delay: local theory and global attractors, J. Comp. Appl. Math., 190, 99-113, (2006) · Zbl 1082.92039
[3] Cooke, K.; van den Driessche, P.; Zou, X., Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39, 332-352, (1999) · Zbl 0945.92016
[4] Tumwiine, J.; Luckhaus, S.; Mugisha, J. Y.T.; Luboobi, L. S., An age-structured mathematical medol for the within host dynamics of malaria and the immune system, J. Math. Medol Algor., 7, 79-97, (2008) · Zbl 1132.92016
[5] Adimy, M.; Crauste, F., Global stability of a partial differential equation with distributed delay due to cellular replication, Nonlinear Anal., 54, 1469-1491, (2003) · Zbl 1028.35149
[6] Alvarez-Vázquez, Lino J.; Fernández, Francisco J.; Muñoz-Sola, Rafael, Analysis of a multistate control peoblem related to food technology, J. Diff. Eqns., 245, 130-153, (2008) · Zbl 1147.49003
[7] Cheng, Z.; Lin, Y. Z., The exact solution of a class of delay parabolic partial differential equation, J. Natural Sci. Heilongjiang Univ., 25, 2, 155-162, (2008) · Zbl 1199.35385
[8] Azbelev, N. V.; Maksimov, V. P.; Rakhmatullina, L. F., Introduction to the theory of functional differential equations, (1991), Nauka Moscow · Zbl 0725.34071
[9] Hale, J. K., Theory of functional differential equations, (1993), Spring-Verlag New York
[10] Diekmann, O.; van Gils, S.; verduyn Lunel, S.; Walther, H.-O., Delay equations, functional, complex, and nonlinear analysis, (1995), Spring-Verlag New York · Zbl 0826.34002
[11] Liang, J.; Xiao, T. J., Solvability of the Cauchy problem for infinite delay equations, Nonlinear Anal., 58, 271-297, (2004) · Zbl 1058.34106
[12] Wu, J. H., Theory and applications of partial functional differential equations, (1996), Spring-Verlag New York
[13] Li, B.; Bohner, M.; Meng, F., Periodic solutions of functional dynamic equations with infinite delay, Nonlinear Anal., 68, 1226-1245, (2008) · Zbl 1135.34335
[14] Xu, D. Y.; Li, S. Y.; Zhou, X. P.; Pu, Z. L., Invariant set and stable region of a class of partial differential equations with time delays, Nonlinear Anal. Real Word Appl., 2, 161-169, (2001) · Zbl 0981.35094
[15] Travis, C. C.; Webb, G. F., Existence and stability for partial functional differential equations, Tran. Amer. Math. Soc., 200, 395-418, (1974) · Zbl 0299.35085
[16] Feng, W.; Lu, X., Asymptotic periodicity in diffusive logistic equations with discrete delays, Nonlinear Anal., 26, 2, 171-178, (1996) · Zbl 0842.35129
[17] Ahmad, S.; Rama Mohana Rao, M., Stability of Volterra diffusion equations with time delays, Appl. Math. Comput., 90, 143-154, (1998) · Zbl 0967.35068
[18] Wolfgang, V., Nonlinear parabolic differential-functional inequalities with boundary-functional conditions, Beiträge Anal., 18, 85-89, (1981) · Zbl 0487.35086
[19] Zhang, Y., The stability of linear partial differential systems with time delay, Int. J. Systems Sci., 26, 1747-1754, (1995) · Zbl 0832.35146
[20] Yang, J.; Wang, C. Y.; Li, J.; Meng, Z. J., Necessary and sufficient conditions for oscillations of neutral hyperbolic partial differential equations with delays, J. Partial Diff. Eqns., 19, 4, 319-324, (2006) · Zbl 1107.35104
[21] El-Borai, M.; Asaad, F. K., On the Cauchy problem for some parabolic partial differential equations with time delays, Kyungpook Math. J., 37, 1, 1-8, (1997) · Zbl 0893.35133
[22] Pao, C. V., Coupled nonlinear parabolic systems with time delays, J. Math. Appl., 196, 237-265, (1995) · Zbl 0854.35122
[23] Barwell, V. K., Special stability problems for functional differential equations, BIT, 15, 130-135, (1975) · Zbl 0306.65044
[24] Liu, M. Z.; Spijker, M. N., The stability of \(\theta\)-methods in the numerical solution of delay differential equations, IMA J. Numer. Anal., 10, 1, 31-48, (1990) · Zbl 0693.65056
[25] Jackiewicz, Z.; Zubik-Kowal, B., Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations, Appl. Numer. Math., 56, 433-443, (2006) · Zbl 1093.65096
[26] Higham, D. J.; Sardar, T., Existence and stability of fixed points for a discretized nonlinear reaction-diffusion equation with delay, Appl. Numer. Math., 18, 155-173, (1995) · Zbl 0834.65079
[27] Wolfgang, V., The difference method in nonlinear parabolic functional-differential equations with boundary-functional conditions, Beiträge Anal., 18, 91-98, (1981)
[28] Lu, X., Combined iterative methods for numerical solutions of parabolic problems with time delay, Appl. Math. Comput., 89, 213-224, (1998) · Zbl 0907.65082
[29] Jiang, S. S.; Chang, Y. Q.; Xie, D. R., The difference method of the intial-boundary value problem for the numerical delay differential equation, J. Shandong Normal Univ. (Natural Sci.), 17, 1, 1-4, (2002)
[30] C.R. Jin, The Numerical Methods for Solving Some Delay Differential Equations, Dissertation for the Doctoral Degree in Science, Harbin Institute of Technology, 2006.
[31] Ferreira, J. A., Energy estimates for delay diffusion-reaction equations, J. Comput. Math., 26, 4, 536-553, (2008) · Zbl 1174.65028
[32] Zhang, Z. B.; Sun, Z. Z., A Crank-Nicolson scheme for a class of delay nonlinear parabolic differential equations, J. Numer. Methods Computer Appl., 31, 2, 131-140, (2010) · Zbl 1240.65266
[33] Willé, D. R.; Baker, C. T.H., The tacking of derivative discontinuities in systems of delay-differential equations, Appl. Numer. Math., 9, 209-222, (1992) · Zbl 0747.65054
[34] Alfredo, B.; Marino, Z., Numerical methods for delay differential equations, (2003), Oxford University Press
[35] Sun, Z. Z., On the compact difference scheme for heat equation with neuman boundary conditions, Numer. Methods Partial Diff. Eqns., 25, 1320-1341, (2009) · Zbl 1181.65115
[36] Sun, Z. Z., The numerical methods for partial equations, (2005), Science Press Beijing, (in Chinese)
[37] Liao, H. L.; Sun, Z. Z., Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Diff. Eqs., 26, 1, 37-60, (2010) · Zbl 1196.65154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.