×

zbMATH — the first resource for mathematics

Bayesian generalized varying coefficient models for longitudinal proportional data with errors-in-covariates. (English) Zbl 1352.62023
Summary: This paper is motivated from a neurophysiological study of muscle fatigue, in which biomedical researchers are interested in understanding the time-dependent relationships of handgrip force and electromyography measures. A varying coefficient model is appealing here to investigate the dynamic pattern in the longitudinal data. The response variable in the study is continuous but bounded on the standard unit interval \((0, 1)\) over time, while the longitudinal covariates are contaminated with measurement errors. We propose a generalization of varying coefficient models for the longitudinal proportional data with errors-in-covariates. We describe two estimation methods with penalized splines, which are formalized under a Bayesian inferential perspective. The first method is an adaptation of the popular regression calibration approach. The second method is based on a joint likelihood under the hierarchical Bayesian model. A simulation study is conducted to evaluate the efficacy of the proposed methods under different scenarios. The analysis of the neurophysiological data is presented to demonstrate the use of the methods.

MSC:
62-07 Data analysis (statistics) (MSC2010)
62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1249/00003677-198101000-00002 · doi:10.1249/00003677-198101000-00002
[2] DOI: 10.1191/147108201128168 · Zbl 1104.62023 · doi:10.1191/147108201128168
[3] DOI: 10.1201/9781420010138 · Zbl 1119.62063 · doi:10.1201/9781420010138
[4] DOI: 10.1198/016214501753168280 · Zbl 1018.62034 · doi:10.1198/016214501753168280
[5] Crainiceanu C., J. Stat. Softw 14 pp 1– (2005) · doi:10.18637/jss.v014.i14
[6] DOI: 10.1214/ss/1038425655 · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[7] DOI: 10.1080/02664760701834931 · Zbl 1147.62315 · doi:10.1080/02664760701834931
[8] DOI: 10.1214/aos/1017939139 · Zbl 0977.62039 · doi:10.1214/aos/1017939139
[9] DOI: 10.4310/SII.2008.v1.n1.a15 · Zbl 1230.62031 · doi:10.4310/SII.2008.v1.n1.a15
[10] DOI: 10.1080/0266476042000214501 · Zbl 1121.62367 · doi:10.1080/0266476042000214501
[11] Hastie T., J. R. Stat. Soc. Ser. B-Methodol 55 pp 757– (1993)
[12] DOI: 10.1093/biomet/85.4.809 · Zbl 0921.62045 · doi:10.1093/biomet/85.4.809
[13] Huang J., Stat. Sin 14 pp 763– (2004)
[14] DOI: 10.1198/1061860043010 · doi:10.1198/1061860043010
[15] DOI: 10.1093/biostatistics/4.2.297 · Zbl 1141.62350 · doi:10.1093/biostatistics/4.2.297
[16] DOI: 10.1016/j.brainres.2005.07.064 · doi:10.1016/j.brainres.2005.07.064
[17] DOI: 10.1023/A:1008929526011 · doi:10.1023/A:1008929526011
[18] DOI: 10.1080/10485259808832748 · Zbl 0913.62041 · doi:10.1080/10485259808832748
[19] Plummer M., Proceedings of the 3rd International Workshop on Distributed Statistical Computing pp 1609– (2003)
[20] DOI: 10.1017/CBO9780511755453 · Zbl 1038.62042 · doi:10.1017/CBO9780511755453
[21] DOI: 10.1093/biomet/asn006 · Zbl 1437.62606 · doi:10.1093/biomet/asn006
[22] DOI: 10.1198/jasa.2010.tm09228 · Zbl 1390.62135 · doi:10.1198/jasa.2010.tm09228
[23] Senturk D., Stat. Sin 21 pp 1831– (2011)
[24] DOI: 10.1002/bimj.201100041 · Zbl 1242.62123 · doi:10.1002/bimj.201100041
[25] Wang X.F., Biom. J
[26] Wang X.F., J. Stat. Softw 39 pp 1– (2011)
[27] DOI: 10.1016/j.jneumeth.2008.09.030 · doi:10.1016/j.jneumeth.2008.09.030
[28] DOI: 10.1016/j.jmva.2010.03.005 · Zbl 1190.62090 · doi:10.1016/j.jmva.2010.03.005
[29] DOI: 10.1214/07-AOS561 · Zbl 1156.62036 · doi:10.1214/07-AOS561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.