×

zbMATH — the first resource for mathematics

Towards classifying propositional probabilistic logics. (English) Zbl 1352.03032
Summary: This paper examines two aspects of propositional probabilistic logics: the nesting of probabilistic operators, and the expressivity of probabilistic assessments. We show that nesting can be eliminated when the semantics is based on a single probability measure over valuations; we then introduce a classification for probabilistic assessments, and present novel results on their expressivity. Logics in the literature are categorized using our results on nesting and on probabilistic expressivity.

MSC:
03B48 Probability and inductive logic
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersen, K.; Hooker, J., A linear programming framework for logics of uncertainty* 1, Decis. Support Syst., 16, 1, 39-53, (1996)
[2] Baier, C.; Clarke, E. M.; Hartonas-Garmhausen, V.; Kwiatkowska, M.; Ryan, M., Symbolic model checking for probabilistic processes, (1997), Springer · Zbl 1401.68180
[3] Baltazar, P., Probabilization of logics: completeness and decidability, Log. Univers., 7, 4, 403-440, (2013) · Zbl 1323.03033
[4] Boole, G., An investigation of the laws of thought: on which are founded the mathematical theories of logic and probabilities, (1854), Walton and Maberly
[5] Bruno, G.; Gilio, A., Applicazione del metodo del simplesso al teorema fondamentale per le probabilita nella concezione soggettivistica, Statistica, 40, 3, 337-344, (1980) · Zbl 0441.60003
[6] Burgess, J. P., Probability logic, J. Symb. Log., 34, 2, 264-274, (1969) · Zbl 0184.00902
[7] Cozman, F.; de Campos, C.; Ferreira da Rocha, J., Probabilistic logic with independence, Int. J. Approx. Reason., 49, 1, 3-17, (2008) · Zbl 1184.68501
[8] Cozman, F. G.; di Ianni, L. F., Probabilistic satisfiability and coherence checking through integer programming, (Symbolic and Quantitative Approaches to Reasoning with Uncertainty, (2013), Springer), 145-156 · Zbl 1390.68591
[9] De Bona, G.; Cozman, F.; Finger, M., Generalized probabilistic satisfiability, (2013 Brazilian Conference on Intelligent Systems (BRACIS), (2013), IEEE), 182-188
[10] Demey, L.; Kooi, B.; Sack, J., Logic and probability, (Zalta, E. N., The Stanford Encyclopedia of Philosophy, (2013))
[11] Fagin, R.; Halpern, J., Reasoning about knowledge and probability, J. ACM, 41, 2, 340-367, (1994) · Zbl 0806.68098
[12] Fagin, R.; Halpern, J.; Megiddo, N., A logic for reasoning about probabilities* 1, Inf. Comput., 87, 1-2, 78-128, (1990) · Zbl 0811.03014
[13] Finger, M.; De Bona, G., Probabilistic satisfiability: logic-based algorithms and phase transition, (Proceedings of IJCAI’11, (2011))
[14] Finger, M.; Le Bras, R.; Gomes, C. P.; Selman, B., Solutions for hard and soft constraints using optimized probabilistic satisfiability, (Proceedings of SAT, (2013)) · Zbl 1390.68594
[15] Gärdenfors, P., Qualitative probability as an intensional logic, J. Philos. Log., 4, 2, 171-185, (1975) · Zbl 0317.02030
[16] Garling, D., Inequalities: a journey into linear analysis, vol. 19, (2007), Cambridge University Press Cambridge · Zbl 1135.26014
[17] Georgakopoulos, G.; Kavvadias, D.; Papadimitriou, C., Probabilistic satisfiability, J. Complex., 4, 1, 1-11, (1988) · Zbl 0647.68049
[18] Haenni, R.; Romeijn, J.; Wheeler, G.; Williamson, J., Probabilistic logic and probabilistic networks, Synthese Library, vol. 350, (2011), Springer · Zbl 1213.03031
[19] Haenni, R.; Romeijn, J.-W.; Wheeler, G.; Williamson, J., Possible semantics for a common framework of probabilistic logics, (Interval/Probabilistic Uncertainty and Non-Classical Logics, (2008), Springer), 268-279 · Zbl 1151.03323
[20] Hailperin, T., Best possible inequalities for the probability of a logical function of events, Am. Math. Mon., 72, 4, 343-359, (1965) · Zbl 0132.13706
[21] Halpern, J. Y., An analysis of first-order logics of probability, Artif. Intell., 46, 3, 311-350, (1990) · Zbl 0723.03007
[22] Halpern, J. Y., Reasoning about uncertainty, (2003), MIT Press · Zbl 1090.68105
[23] Hansen, P.; Jaumard, B., Probabilistic satisfiability, (Handbook of Defeasible Reasoning and Uncertainty Management Systems: Algorithms for Uncertainty and Defeasible Reasoning, (2000), Springer), 321 · Zbl 1015.68198
[24] Hansen, P.; Perron, S., Merging the local and global approaches to probabilistic satisfiability, Int. J. Approx. Reason., 47, 2, 125-140, (2008) · Zbl 1343.68220
[25] Howson, C.; Urbach, P., Scientific reasoning: the Bayesian approach, (1989), Open Court Publishing Co.
[26] Ikodinović, N.; Ognjanović, Z.; Perović, A.; Rašković, M., Hierarchies of probability logics, (Godo, Lluis; Prade, Henri, ECAI-2012 Workshop on Weighted Logics for Artificial Intelligence WL4AI, Montpellier, France, August 28, (2012)), 9-15
[27] Jaumard, B.; Fortin, A.; Shahriar, I.; Sultana, R., First order probabilistic logic, (Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2006, (2006), IEEE), 341-346
[28] Jaumard, B.; Hansen, P.; Poggi de Aragao, M., Column generation methods for probabilistic logic, INFORMS J. Comput., 3, 2, 135, (1991) · Zbl 0800.68864
[29] Kavvadias, D.; Papadimitriou, C., A linear programming approach to reasoning about probabilities, Ann. Math. Artif. Intell., 1, 1, 189-205, (1990) · Zbl 0878.68034
[30] Klinov, P.; Parsia, B., A hybrid method for probabilistic satisfiability, (Automated Deduction - CADE-23, (2011), Springer), 354-368 · Zbl 1341.68191
[31] Kronecker, L., Näherungsweise ganzzahlige auflösung linearer gleichungen, (1884) · JFM 16.0083.02
[32] Kyburg, H. E.; Teng, C. M., Uncertain inference, (2001), Cambridge University Press · Zbl 1023.03002
[33] Nilsson, N., Probabilistic logic* 1, Artif. Intell., 28, 1, 71-87, (1986) · Zbl 0589.03007
[34] Ognjanovic, Z.; Raskovic, M., Some probability logics with new types of probability operators, J. Log. Comput., 9, 2, 181-195, (1999) · Zbl 0941.03022
[35] Ognjanovic, Z.; Raškovic, M., Some first-order probability logics, Theor. Comput. Sci., 247, 1, 191-212, (2000) · Zbl 0954.03024
[36] Ognjanovic, Z.; Raškovic, M.; Markovic, Z., Probability logics, (Logic in Computer Science, (2009), Mathematical Institute of Serbian Academy of Sciences and Arts), 35-111 · Zbl 1224.03005
[37] Scott, D.; Krauss, P., Assigning probabilities to logical formulas, Asp. Induct. Log., 43, 219-264, (2000)
[38] Uchii, S., Higher order probabilities and coherence, Philos. Sci., 40, 373-381, (1973)
[39] Williamson, J., Philosophies of probability, (Handbook of the Philosophy of Mathematics, vol. 4, (2009)), 493-533
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.