zbMATH — the first resource for mathematics

A robust optimization approach to reduce the bullwhip effect of supply chains with vendor order placement lead time delays in an uncertain environment. (English) Zbl 1351.90028
Summary: Supply chain management is important for companies and organizations to improve their business and enhance competitiveness in the global marketplace. The bullwhip effect problem of supply chain systems with vendor order placement lead time delays in an uncertain environment is addressed in this paper. Among the numerous causes of bullwhip effect, we focus on uncertainties with respect to demand, production process, supply chain structure, inventory policy implementation and especially vendor order placement lead time delays. Minimizing the negative effect of these uncertainties in inducing bullwhip effect creates a need for developing dynamical inventory policy that increases responsiveness to demand and decreases volatility in inventory replenishment. First, a dynamic model of supply chain with above uncertainties is developed. Then, a novel uncertainty-dependent robust inventory control method using inventory position information is proposed. Additionally, the maximum allowable vendor order placement lead time delay that ensures the stability of supply chains and the suppression of bullwhip effect under the proposed inventory control policy is explored and measured. We find that vendor order placement lead time delays do play important role in supply chain dynamics and contribute to its turbulence and volatility. The effectiveness and flexibility of proposed method is verified through simulation study.

90B06 Transportation, logistics and supply chain management
90B05 Inventory, storage, reservoirs
39A60 Applications of difference equations
Full Text: DOI
[1] Fiala, P., Information sharing in supply chains, Omega, 33, 419-423, (2005)
[2] Guiffrida, A. L.; Jaber, M. Y., Managerial and economic impacts of reducing delivery variance in the supply chain, Appl. Math. Model., 32, 2149-2161, (2008) · Zbl 1145.90324
[3] Al-Mudimigh, A. S.; Zairi, M.; Ahmed, A. M.M., Extending the concept of supply chain: the effective management of value chains, Int. J. Prod. Econ., 87, 309-320, (2004)
[4] Pishvaee, M. S.; Rabbani, M.; Torabi, S. A., A robust optimization approach to closed-loop supply chain network design under uncertainty, Appl. Math. Model., 35, 637-649, (2011) · Zbl 1205.90056
[5] He, Y.; Zhao, X.; Zhao, L.; He, J., Coordinating a supply chain with effort and price dependent stochastic demand, Appl. Math. Model., 33, 2777-2790, (2009) · Zbl 1205.90045
[6] de Kok, T.; Janssen, F.; van Doremalen, J.; van Wachem, E.; Clerkx, M.; Peeters, W., Philips electronics synchronizes its supply chain to end the bullwhip effect, Interfaces, 35, 37-48, (2005)
[7] Forrester, J. W., Industrial dynamics, (1961), M.I.T. Press Cambridge, Mass
[8] Ouyang, Y.; Li, X., The bullwhip effect in supply chain networks, Eur. J. Oper. Res., 201, 799-810, (2010) · Zbl 1173.90338
[9] Scukanec, A.; Rogic, K.; Babic, D., Bullwhip effect in supply chains, Promet Traffic-Traffico., 19, 289-293, (2007)
[10] Lee, H. L.; Padmanabhan, V.; Whang, S., Information distortion in a supply chain: the bullwhip effect, Manage. Sci., 43, 546-558, (1997) · Zbl 0888.90047
[11] Zhou, Y.; Li, D. H., Coordinating order quantity decisions in the supply chain contract under random demand, Appl. Math. Model., 31, 1029-1038, (2007) · Zbl 1144.90426
[12] Geary, S.; Disney, S. M.; Towill, D. R., On bullwhip in supply chains - historical review, present practice and expected future impact, Int. J. Prod. Econ., 101, 2-18, (2006)
[13] Nienhaus, J.; Ziegenbein, A.; Schoensleben, P., How human behaviour amplifies the bullwhip effect - a study based on the beer distribution game online, Prod. Plan. Control, 17, 547-557, (2006)
[14] H.M. Bidhandi, R.M. Yusuff, Integrated supply chain planning under uncertainty using an improved stochastic approach, Appl. Math. Model. In Press. · Zbl 1219.90019
[15] Moyaux, T.; Chaib-draa, B.; D’Amours, S., Information sharing as a coordination mechanism for reducing the bullwhip effect in a supply chain, Ieee T. Syst. Man. Cy. C., 37, 396-409, (2007)
[16] Croson, R.; Donohue, K., Behavioral causes of the bullwhip effect and the observed value of inventory information, Manag. Sci., 52, 323-336, (2006) · Zbl 1232.90037
[17] Bhattacharya, R.; Bandyopadhyay, S., A review of the causes of bullwhip effect in a supply chain, Int. J. Adv. Manuf. Tech., 54, 1245-1261, (2011)
[18] Miragliotta, G., Layers and mechanisms: a new taxonomy for the bullwhip effect, Int. J. Prod. Econ., 104, 365-381, (2006)
[19] Villegas, F. A.; Smith, N. R., Supply chain dynamics: analysis of inventory vs. order oscillations trade-off, Int. J. Prod. Res., 44, 1037-1054, (2006) · Zbl 1095.90010
[20] Seferlis, P.; Giannelos, N. F., A two-layered optimisation-based control strategy for multi-echelon supply chain networks, Comput. Chem. Eng., 28, 799-809, (2004)
[21] Carbonneau, R.; Laframboise, K.; Vahidov, R., Application of machine learning techniques for supply chain demand forecasting, Eur. J. Oper. Res., 184, 1140-1154, (2008) · Zbl 1141.90441
[22] Ketzenberg, M., The value of information in a capacitated closed loop supply chain, Eur. J. Oper. Res., 198, 491-503, (2009) · Zbl 1163.90367
[23] Abginehchi, S.; Farahani, R. Z., Modeling and analysis for determining optimal suppliers under stochastic lead times, Appl. Math. Model., 34, 1311-1328, (2010) · Zbl 1186.90007
[24] Springer, M.; Kim, I., Managing the order pipeline to reduce supply chain volatility, Eur. J. Oper. Res., 203, 380-392, (2010) · Zbl 1177.90060
[25] de Vericourt, F.; Karaesmen, F.; Dallery, Y., Optimal stock allocation for a capacitated supply system, Manage. Sci., 48, 1486-1501, (2002) · Zbl 1232.90039
[26] Hall, N. G.; Potts, C. N., Supply chain scheduling: batching and delivery, Oper. Reso., 51, 566-584, (2003) · Zbl 1165.90455
[27] O’Donnell, T.; Maguirez, L.; McIvor, R.; Humphreys, P., Minimizing the bullwhip effect in a supply chain using genetic algorithms, Int. J. Prod. Res., 44, 1523-1543, (2006) · Zbl 1128.90529
[28] Lee, F. C.; Wen, U. P., A heuristic approach for solving serially distributed storage depots under general-integer policy, Asia. Pac. J. Oper., 24, 479-497, (2007) · Zbl 1162.90311
[29] Wangphanich, P.; Kara, S.; Kayis, B., Analysis of the bullwhip effect in multi-product, multi-stage supply chain systems-a simulation approach, Int. J. Prod. Res., 48, 4501-4517, (2010) · Zbl 1197.90070
[30] Chatfield, D. C.; Kim, J. G.; Harrison, T. P.; Hayya, J. C., The bullwhip effect - impact of stochastic lead time, information quality, and information sharing: a simulation study, Prod. Oper. Manag., 13, 340-353, (2004)
[31] Caloiero, G.; Strozzi, F.; Comenges, J. Z., A supply chain as a series of filters or amplifiers of the bullwhip effect, Int. J. Prod. Econ., 114, 631-645, (2008)
[32] Duc, T. T.H.; Luong, H. T.; Kim, Y., Effect of the third-party warehouse on bullwhip effect and inventory cost in supply chains, Int. J. Prod. Econ., 124, 395-407, (2010)
[33] Ismail, A. A., A simulation model to investigate critical factors influencing the bullwhip effect in a supply chain, master thesis, (2009), The French University in Egypt Egypt
[34] Babai, M. Z.; Dallery, Y., Dynamic versus static control policies in single stage production- inventory systems, Int. J. Prod. Res., 47, 415-433, (2009) · Zbl 1231.90009
[35] Chen, Y. F.; Disney, S. M., The myopic order-up-to policy with a proportional feedback controller, Int. J. Prod. Res., 45, 351-368, (2007) · Zbl 1108.90007
[36] Aggelogiannaki, E.; Sarimveis, H., Design of a novel adaptive inventory control system based on the online identification of lead time, Int. J. Prod. Econ., 114, 781-792, (2008)
[37] Dejonckheere, J.; Disney, S. M.; Lambrecht, M. R.; Towill, D. R., Measuring and avoiding the bullwhip effect: a control theoretic approach, Eur. J. Oper. Res., 147, 567-590, (2003) · Zbl 1026.90030
[38] Wang, H.; Chen, Y.; Fu, C.; Li, Y. W.; Hong, Y. M., The linear control theory for counteracting the bullwhip effect, Proceedings of the, International Conference on Management Science & Engineering, 2006, 434-438, (2006)
[39] Hoberg, K.; Thonemann, U. W.; Bradley, J. R., Analyzing the effect of inventory policies on the nonstationary performance with transfer functions, IIE Trans., 39, 911-924, (2007)
[40] Braun, M. W.; Rivera, D. E.; Carlyle, W. M.; Kempf, K. G., Application of model predictive control to robust management of multiechelon demand networks in semiconductor manufacturing, Simul-T. Soc. Mod. Sim., 79, 139-156, (2003)
[41] H. Dong, W.S. Wang, F. Guo, Y.P. Li, Application of model predictive control in supply chain management under networked manufacturing. Proceedings of the 13th International Conference on Industrial Engineering and, Engineering Management, 2006, pp. 490-494.
[42] Boukas, E. K.; Shi, P.; Agarwal, R. K., An application of robust control technique to manufacturing systems with uncertain processing time, Optim. Contr. Appl. Met., 21, 257-268, (2000) · Zbl 1070.90513
[43] Pierreval, H.; Bruniaux, R.; Caux, C., A continuous simulation approach for supply chains in the automotive industry, Simul. Model. Pract. Th., 15, 185-198, (2007)
[44] Nagurney, A.; Cruz, J.; Matsypura, D., Dynamics of global supply chain supernetworks, Math. Comput. Model., 37, 963-983, (2003) · Zbl 1080.90012
[45] X. Yan, C.H. Kang, Supply chain management and value creation, International Conference on Logistics Engineering and Supply Chain, Logistics Research and Practice in China, 2008, pp.324-328.
[46] Kumar, S.; Malegeant, P., Strategic alliance in a closed-loop supply chain, a case of manufacturer and eco-non-profit organization, Technovation, 26, 1127-1135, (2006)
[47] Hale, J. K.; Lunel, S. M.V., Introduction to functional differential equations, (1993), Springer-Verlag New York · Zbl 0787.34002
[48] Jankovic, M., Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems, Ieee T. Automat. Contr., 46, 1048-1060, (2001) · Zbl 1023.93056
[49] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), Society for Industrial Mathematics Philadelphia · Zbl 0816.93004
[50] Wang, Y.; Xie, L.; Souza, C. E.D., Robust control of a class of uncertain nonlinear systems, Syst. Control Lett., 19, 139-149, (1992) · Zbl 0765.93015
[51] Jbilou, K.; Messaoudi, A.; Tabaa, K., Some Schur complement identities and applications to matrix extrapolation methods, Linear Algebra Appl., 392, 195-210, (2004) · Zbl 1059.65029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.