zbMATH — the first resource for mathematics

Analytic dependence is an unnecessary requirement in renormalization of locally covariant QFT. (English) Zbl 1351.81081
In their axioms for Wick powers in locally covariant quantum field theory on curved space-times [ibid. 223, No. 2, 289–326 (2001; Zbl 0989.81081)], S. Hollands and R. M. Wald required a certain analyticity of expectation values of Wick powers under analytic changes of analytic background data. This is somewhat unsatisfactory, as the framework is otherwise independent of any analyticity requirements and emphasizes the locality of all constructions.
The authors show that the analyticity requirement is indeed not a necessary requirement for the essential uniqueness of Wick powers. This provides an important simplification of the original axioms of Hollands & Wald. The proof relies on the Peetre-Slovák theorem.

81T20 Quantum field theory on curved space or space-time backgrounds
81T05 Axiomatic quantum field theory; operator algebras
Full Text: DOI arXiv
[1] Anderson, I.M., Torre, C.G.: Two component spinors and natural coordinates for the prolonged Einstein equation manifolds, tech. rep., Utah State University (1994) · Zbl 1146.46021
[2] Anderson, I.M., Torre, C.G.: Classification of local generalized symmetries for the vacuum Einstein equations. Commun. Math. Phys. 176, 479-539 (1996). arXiv:gr-qc/9404030
[3] Appleby, P.G.; Duffy, B.R.; Ogden, R.W., On the classification of isotropic tensors, Glasgow Math. J., 29, 185-196, (1987) · Zbl 0627.53008
[4] Bierstone, E., Differentiable functions, Boletim da Sociedade Brasileira de Matemática, 11, 139-189, (1980) · Zbl 0584.58006
[5] Brunetti, R.; Fredenhagen, K.; Köhler, M., The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes, Commun. Math. Phys., 180, 633-652, (1996) · Zbl 0923.58052
[6] Brunetti, R.; Fredenhagen, K., Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds, Commun. Math. Phys., 208, 623-661, (2000) · Zbl 1040.81067
[7] Brunetti, R.; Fredenhagen, K.; Verch, R., The generally covariant locality principle—a new paradigm for local quantum field theory, Commun. Math. Phys., 237, 31-68, (2003) · Zbl 1047.81052
[8] Fulling, S.A.; King, R.C.; Wybourne, B.G.; Cummins, C.J., Normal forms for tensor polynomials. I. the Riemann tensor, Class. Quantum Gravity, 9, 1151-1197, (1992) · Zbl 0991.53517
[9] Fulton W.: Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1996) · Zbl 0878.14034
[10] Gel’fand, I.M., Shapiro, Z.Y.: Homogeneous functions and their extensions. Uspekhi Matematicheskikh Nauk 10, 3-70 (1955). http://mi.mathnet.ru/eng/umn7998 · Zbl 0923.58052
[11] Shilov I.M., Gel’fand G.E.: Generalized Functions, vol. I. Properties and Operations. Academic Press, New York (1964) · Zbl 0115.33101
[12] Goodman R., Wallach N.R.: Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, vol. 255. Springer, New York (2009) · Zbl 1173.22001
[13] Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289-326 (2001). arXiv:gr-qc/0103074 · Zbl 0989.81081
[14] Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309-345 (2002). arXiv:gr-qc/0111108 · Zbl 1015.81043
[15] Iyer, V., Wald, R.M.: Some properties of the noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50, 846-864 (1994). arXiv:gr-qc/9403028 · Zbl 1047.81052
[16] Kolař I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry. Electronic Library of Mathematics. Springer, Berlin (1993) · Zbl 0782.53013
[17] Navarro, J., Sancho, J.B.: Peetre-Slovák’s theorem revisited (2014). arXiv:1411.7499
[18] Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics, vol. 107, 2nd edn. Springer, New York (1993) · Zbl 0785.58003
[19] Peetre, J.: Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 7, 211-218 (1959). http://eudml.org/doc/165715 · Zbl 0089.32502
[20] Peetre J.: Réctification à l’article: Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 8, 116-120 (1960). http://eudml.org/doc/251805 · Zbl 0097.10402
[21] Penrose, R., A spinor approach to general relativity, Ann. Phys., 10, 171-201, (1960) · Zbl 0091.21404
[22] Shelkovich, V.M., Associated and quasi associated homogeneous distributions (generalized functions), J. Math. Anal. Appl., 338, 48-70, (2008) · Zbl 1146.46021
[23] Slovák, J., Peetre theorem for nonlinear operators, Ann. Global Anal. Geom., 6, 273-283, (1988) · Zbl 0636.58042
[24] Thomas T.Y.: Differential Invariants of Generalized Spaces. CUP, Cambridge (1934) · Zbl 0009.08503
[25] Tichy, W., Flanagan, E.: How unique is the expected stress-energy tensor of a massive scalar field? Phys. Rev. D 58 (1998) 124007. arXiv:gr-qc/9807015
[26] Torre, C.G.: Spinors, jets, and the Einstein equations. In: Braham, S.P., Gegenberg, J.D., McKellar, R.J. (eds.) The Sixth Canadian Conference on General Relativity and Relativistic Astrophysics, Fields Institute Communications, vol. 15, pp. 125-136. AMS, Providence (1997). arXiv:gr-qc/9508005
[27] Weyl H.: The Classical Groups: Their Invariants and Representations. Princeton University Press, Princeton (1997) · Zbl 1024.20501
[28] Zahn, J.: Locally covariant charged fields and background independence. Rev. Math. Phys. 27, 1550017 (2015). arXiv:1311.7661 · Zbl 1327.81273
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.