×

An axisymmetric unstructured finite volume method applied to the numerical modeling of an atmospheric pressure gas discharge. (English) Zbl 1351.76132

Summary: We develop a finite volume method based on unstructured triangular and/or quadrangular meshes for the numerical modeling of gas discharges at atmospheric pressure. The discretization of the computational domain is performed with median-dual control-volumes. Gradient calculations at the faces of the control-volumes are based on finite-element interpolation using shape functions. An FCT method was chosen for the species transport integration. The accuracy of the numerical scheme is verified for different types of mesh-elements in a plane-to-plane DBD geometry. We present comparisons with literature results based on the immersed boundary method in a point-to-plane geometry and investigate the need of a high-order scheme for an accurate model of a filamentary discharge. Finally, we apply our scheme in a study of a discharge between two hemispherical electrodes covered with dielectrics, while focusing on sufficient spatial resolution in the vicinity of the dielectric surface.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
78M12 Finite volume methods, finite integration techniques applied to problems in optics and electromagnetic theory
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
82D05 Statistical mechanics of gases
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
86A25 Geo-electricity and geomagnetism

Software:

PARDISO; FlexPDE; SHASTA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bogaerts, A.; Neyts, E.; Gijbels, R.; van der Mullen, J., Gas discharge plasmas and their applications, Spectrochim. Acta, Part B, At. Spectrosc., 57, 4, 609-658 (2002)
[2] Célestin, S.; Bonaventura, Z.; Zeghondy, B.; Bourdon, A.; Ségur, P., The use of the ghost fluid method for Poisson’s equation to simulate streamer propagation in point-to-plane and point-to-point geometries, J. Phys. D, Appl. Phys., 42, 6, 065203 (2009)
[3] Georghiou, G. E.; Morrow, R.; Metaxas, A. C., The theory of short-gap breakdown of needle point-plane gaps in air using finite-difference and finite-element methods, J. Phys. D, Appl. Phys., 32, 12, 1370 (1999)
[4] Georghiou, G. E.; Morrow, R.; Metaxas, A. C., A two-dimensional, finite-element, flux-corrected transport algorithm for the solution of gas discharge problems, J. Phys. D, Appl. Phys., 33, 19, 2453 (2000)
[5] Hallac, A.; Georghiou, G. E.; Metaxas, A. C., Secondary emission effects on streamer branching in transient non-uniform short-gap discharges, J. Phys. D, Appl. Phys., 36, 2498-2509 (2003)
[6] Georghiou, G. E.; Papadakis, A. P.; Morrow, R.; Metaxas, A. C., Numerical modelling of atmospheric pressure gas discharges leading to plasma production, J. Phys. D, Appl. Phys., 38, 20, R303 (2005)
[7] Papageorgiou, L.; Metaxas, A. C.; Georghiou, G. E., Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena, J. Phys. D, Appl. Phys., 44, 4, 045203 (2011)
[8] Boris, J. P.; Book, D. L., Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys., 11, 1, 38-69 (1973) · Zbl 0251.76004
[9] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
[10] Löhner, R.; Morgan, K.; Peraire, J.; Vahdati, M., Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations, Int. J. Numer. Methods Fluids, 7, 10, 1093-1109 (1987) · Zbl 0633.76070
[11] Kuzmin, D., Explicit and implicit FEM-FCT algorithms with flux linearization, J. Comput. Phys., 228, 7, 2517-2534 (2009) · Zbl 1275.76171
[12] Hallac, A.; Georghiou, G. E.; Metaxas, A. C., Plasma production and control at atmospheric pressure using dielectric material, (16th International Symposium on Plasma Chemistry (2003)), 810-814
[13] Papageorgiou, L.; Metaxas, A. C.; Georghiou, G. E., Three-dimensional streamer modeling in atmospheric pressure air, IEEE Trans. Plasma Sci., 39, 11, 2224-2225 (2011)
[14] Bourdon, A.; Pasko, V. P.; Liu, N. Y.; Célestin, S.; Ségur, P.; Marode, E., Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations, Plasma Sources Sci. Technol., 16, 3, 656 (2007)
[15] Luque, A.; Ebert, U.; Montijn, C.; Hundsdorfer, W., Photoionization in negative streamers: fast computations and two propagation modes, Appl. Phys. Lett., 90, 081501 (2007)
[16] Lay, B.; Moss, R. S.; Rauf, S.; Kushner, M. J., Breakdown processes in metal halide lamps, Plasma Sources Sci. Technol., 12, 1, 8 (2003)
[17] Scharfetter, D. L.; Gummel, H. K., Large-signal analysis of a silicon read diode oscillator, IEEE Trans. Electron Devices, 17, 64-67 (1969)
[18] Babaeva, N. Y.; Bhoj, A. N.; Kushner, M. J., Streamer dynamics in gases containing dust particles, Plasma Sources Sci. Technol., 15, 591-602 (2006)
[19] Min, W.-K.; Park, J.-B.; Choi, S.-C.; Kang, J., Numerical analysis of gas discharge using FEM-FCT on unstructured grid, J. Korean Phys. Soc., 42, S908-S915 (2003)
[20] Deconinck, Th.; Mahadevan, S.; Raja, L. L., Discretization of the Joule heating term for plasma discharge fluid models in unstructured meshes, J. Comput. Phys., 228, 12, 4435-4443 (2009) · Zbl 1395.76114
[21] Deconinck, Th.; Raja, L. L., Modeling of mode transition behavior in argon microhollow cathode discharges, Plasma Process. Polym., 6, 5, 335-346 (2009)
[22] Breden, D.; Miki, K.; Raja, L. L., Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets/bullets, Plasma Sources Sci. Technol., 21, 3, 034011 (2012)
[23] Benkhaldoun, F.; Fořt, J.; Hassouni, K.; Karel, J., Simulation of planar ionization wave front propagation on an unstructured adaptive grid, J. Comput. Appl. Math., 236, 18, 4623-4634 (2012) · Zbl 1431.76157
[24] Kozlov, K. V.; Brandenburg, R.; Wagner, H. E.; Morozov, A. M.; Michel, P., Investigation of the filamentary and diffuse mode of barrier discharges in \(\text{N}_2 / \text{O}_2\) mixtures at atmospheric pressure by cross-correlation spectroscopy, J. Phys. D, Appl. Phys., 38, 518-529 (2005)
[25] Ségur, P.; Bourdon, A.; Marode, E.; Bessières, D.; Paillol, J. H., The use of an improved Eddington approximation to facilitate the calculation of photoionization in streamer discharges, Plasma Sources Sci. Technol., 15, 648-660 (2006)
[26] Zheleznyak, M. B.; Mnatsakanyan, A. Kh.; Sizykh, S. V., Photoionization of nitrogen and oxygen mixtures by radiation from a gas discharge, High Temp., 20, 357-362 (1982)
[27] Ségur, P.; Bordage, M.-C.; Balaguer, J.-P.; Yousfi, M., The application of a modified form of the \(S_N\) method to the calculation of swarm parameters of electrons in a weakly ionised equilibrium medium, J. Comput. Phys., 50, 1, 116-137 (1983) · Zbl 0533.76079
[28] Kossyi, I. A.; Kostinsky, A. Y.; Matveyev, A. A.; Silakov, V. P., Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures, Plasma Sources Sci. Technol., 1, 3, 207-220 (1992)
[29] Gordiets, B. F.; Ferreira, C. M.; Guerra, V. L.; Loureiro, J. M.A. H.; Nahorny, J.; Pagnon, D.; Touzeau, M.; Vialle, M., Kinetic model of a low-pressure \(N_2-O_2\) flowing glow discharge, IEEE Trans. Plasma Sci., 23, 4, 750-768 (1995)
[30] Gordiets, B.; Ferreira, C. M.; Pinheiro, M. J.; Ricard, A., Self-consistent kinetic model of low-pressure \(N_2-H_2\) flowing discharges: II. Surface processes and densities of N, H, \(NH_3\) species, Plasma Sources Sci. Technol., 7, 3, 379 (1998)
[31] Piper, L. G., The excitation of \(\text{N}({}^2P)\) by \(\text{N}_2(A^3 \sum_u^+, v^\prime = 0, 1)\), J. Chem. Phys., 90, 12, 7087 (1989)
[32] Guerra, V.; Sa, P. A.; Loureiro, J., Role played by the \(\text{N}_2(A^3 \sum_u^+)\) metastable in stationary \(\text{N}_2\) and \(\text{N}_2-\text{O}_2\) discharges, J. Phys. D, Appl. Phys., 34, 1745-1755 (2001)
[33] Simek, M.; Babicky, V.; Clupek, M.; DeBenedictis, S.; Dilecce, G.; Sunka, P., Excitation of \(\text{N}_2(C^3 \Pi_u)\) and \(\text{NO}(\text{A}^2 \sum^+)\) states in a pulsed positive corona discharge in \(\text{N}_2, \text{N}_2-\text{O}_2\) and \(\text{N}_2\)-NO mixtures, J. Phys. D, Appl. Phys., 35, 2591-2602 (1998)
[34] Radzig, A. A.; Smirnov, B., Reference Data on Atoms, Molecules and Ions, Springer Ser. Chem. Phys., vol. 31 (1985), Springer-Verlag
[35] Khamphan, C., Modélisation Numérique de décharges contrôlées par barrières diélectriques à la pression atmosphérique (2004), CPAT, Université Paul Sabatier: CPAT, Université Paul Sabatier 118, Route de Narbonne, Toulouse, France, PhD thesis
[36] Golubovskii, Yu. B.; Maiorov, V. A.; Behnke, J.; Behnke, J. F., Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen, J. Phys. D, Appl. Phys., 35, 8, 751 (2002)
[37] Kulikovsky, A. A., Positive streamer in a weak field in air: a moving avalanche-to-streamer transition, Phys. Rev. E, 57, 7066-7074 (1998)
[38] Kulikovsky, A. A., The mechanism of positive streamer acceleration and expansion in air in a strong external field, J. Phys. D, Appl. Phys., 30, 1515-1522 (1997)
[39] Lewis, P. E.; Ward, J. P., The Finite Element Method: Principle and Applications (1991), Addison-Wesley
[40] Zakari, M., Modélisation Volumes-Finis en maillages non structurés de décharges électriques à la pression atmosphérique (2013), University of Toulouse, PhD thesis
[41] Schenk, Olaf; Gärtner, Klaus, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst., 20, 3, 475-487 (2004)
[42] Mavriplis, D. J., Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes, (16th AIAA Computational Fluid Dynamics Conference (2003), American Institute of Aeronautic and Astronautics), 1-13
[43] Kuzmin, D.; Löhner, R.; Turek, S., Flux-Corrected Transport (2005), Springer-Verlag: Springer-Verlag Berlin, Germany
[44] Puigt, G.; Auffray, V.; Müller, J.-D., Discretisation of diffusive fluxes on hybrid grids, J. Comput. Phys., 229, 5, 1425-1447 (2010) · Zbl 1329.76213
[45] PDE Solutions, FlexPDE (2013)
[46] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), Taylor and Francis · Zbl 0595.76001
[47] Célestin, S.; Bonaventura, Z.; Guaitella, O.; Rousseau, A.; Bourdon, A., Influence of surface charges on the structure of a dielectric barrier discharge in air at atmospheric pressure: experiment and modeling, Eur. Phys. J. Appl. Phys., 47, 2, 22810 (2009)
[48] Gherardi, N.; Gouda, G.; Gat, E.; Ricard, A.; Massines, F., Transition from glow silent discharge to micro-discharges in nitrogen gas, Plasma Sources Sci. Technol., 9, 3, 340 (2000)
[49] Segur, P.; Massines, F., The role of numerical modelling to understand and to predict the existence of an atmospheric pressure glow discharge controlled by a dielectric barrier, (Proc. 13th Int. Conference on Gas Discharges and Their Applications. Proc. 13th Int. Conference on Gas Discharges and Their Applications, Glasgow, UK (2000)), 15-24
[50] Khamphan, C.; Ségur, P.; Massines, F.; Bordage, M. C.; Gherardi, N.; Cesses, Y., Secondary electron emission by nitrogen metastable states in atmospheric pressure glow discharge, (Proc. 16th Int. Symp. on Plasma Chemistry. Proc. 16th Int. Symp. on Plasma Chemistry, Taormina, Italy (2003))
[51] Massines, F.; Gherardi, N.; Naudé, N.; Ségur, P., Recent advances in the understanding of homogeneous dielectric barrier discharges, Eur. Phys. J. Appl. Phys., 47 (2009)
[52] Yurgelenas, Yu. V.; Wagner, H.-E., A computational model of a barrier discharge in air at atmospheric pressure: the role of residual surface charges in microdischarge formation, J. Phys. D, Appl. Phys., 39, 18, 4031 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.