×

zbMATH — the first resource for mathematics

Statistics and compression of scl. (English) Zbl 1351.37214
Summary: We obtain sharp estimates on the growth rate of stable commutator length on random (geodesic) words, and on random walks, in hyperbolic groups and groups acting non-degenerately on hyperbolic spaces. In either case, we show that with high probability stable commutator length of an element of length \(n\) is of order \(n/ \log n\). This establishes quantitative refinements of qualitative results of Bestvina and Fujiwara and others on the infinite dimensionality of two-dimensional bounded cohomology in groups acting suitably on hyperbolic spaces, in the sense that we can control the geometry of the unit balls in these normed vector spaces (or rather, in random subspaces of their normed duals). As a corollary of our methods, we show that an element obtained by random walk of length \(n\) in a mapping class group cannot be written as a product of fewer than \(O(n/ \log n)\) reducible elements, with probability going to \(1\) as \(n\) goes to infinity. We also show that the translation length on the complex of free factors of a random walk of length \(n\) on the outer automorphism group of a free group grows linearly in \(n\).

MSC:
37H10 Generation, random and stochastic difference and differential equations
57M60 Group actions on manifolds and cell complexes in low dimensions
20F12 Commutator calculus
68R15 Combinatorics on words
20F67 Hyperbolic groups and nonpositively curved groups
57M50 General geometric structures on low-dimensional manifolds
20P05 Probabilistic methods in group theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Brooks, Riemann Surfaces and Related topics: Proceedings of the 1978 Stony Brook Conference (SUNY, Stony Brook, NY, 1978) pp 53– (1981)
[2] DOI: 10.3934/jmd.2008.2.499 · Zbl 1151.20027
[3] DOI: 10.1016/S0040-9383(96)00046-8 · Zbl 0884.55005
[4] DOI: 10.1007/s00222-007-0081-y · Zbl 1185.57011
[5] Epstein, Word Processing in Groups (1992) · Zbl 0764.20017
[6] DOI: 10.1017/CBO9780511470967
[7] DOI: 10.2140/gt.2011.15.123 · Zbl 1273.60022
[8] DOI: 10.1006/jmaa.1997.5850 · Zbl 0946.60067
[9] Witte-Morris, New York J. Math. 13 pp 383– (2007)
[10] DOI: 10.2140/gt.2002.6.69 · Zbl 1021.57001
[11] DOI: 10.2140/pjm.1993.159.241 · Zbl 0797.20029
[12] Stroock, Probability Theory, an Analytic View (1993) · Zbl 0925.60004
[13] Cannon, Enseign. Math. (2) 42 pp 215– (1996)
[14] DOI: 10.4171/GGD/74 · Zbl 1190.20017
[15] DOI: 10.1007/BF00146825 · Zbl 0606.57003
[16] DOI: 10.1007/s002080100258 · Zbl 1012.20019
[17] Bavard, Enseign. Math. (2) 37 pp 109– (1991)
[18] Rivin, Illinois J. Math. 54 pp 327– (2010)
[19] DOI: 10.4171/052
[20] DOI: 10.1017/S0143385709000662 · Zbl 1217.37025
[21] DOI: 10.1215/00127094-2008-009 · Zbl 1207.20068
[22] DOI: 10.1142/e018
[23] DOI: 10.1007/BF02771776 · Zbl 0269.58010
[24] DOI: 10.1007/s100970050007 · Zbl 0932.22008
[25] Picaud, Bull. Soc. Math. France 125 pp 115– (1997)
[26] DOI: 10.1112/jlms/jds011 · Zbl 1350.37010
[27] DOI: 10.1112/jtopol/jtq031 · Zbl 1207.37027
[28] DOI: 10.1090/S0002-9947-10-04903-2 · Zbl 1232.37023
[29] DOI: 10.1007/BF01162777 · Zbl 0523.20028
[30] DOI: 10.1017/CBO9780511542947
[31] Kakutani, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 pp 247– (1951)
[32] DOI: 10.1007/s002220050074 · Zbl 0864.57014
[33] DOI: 10.2307/2661351 · Zbl 0984.60088
[34] DOI: 10.1090/conm/484/09477
[35] Hall, Martingale Limit Theory and Its Application (1980) · Zbl 0462.60045
[36] DOI: 10.1007/s11856-008-1070-6 · Zbl 1211.20038
[37] Gromov, Hyperbolic Groups pp 75– (1987)
[38] Gromov, Publ. Math. Inst. Hautes √Čtudes Sci. 56 pp 5– (1982)
[39] DOI: 10.1007/BF02564445 · Zbl 0647.58009
[40] Ghys, Knots and Dynamics pp 247– (2007)
[41] Furman, Random Walks on Groups and Random Transformations pp 931– (2002) · Zbl 1053.60045
[42] Fujiwara, Groups of Diffeomorphisms pp 283– (2008)
[43] DOI: 10.1112/S0024611598000033 · Zbl 0891.20027
[44] DOI: 10.1016/S0040-9383(97)00099-2 · Zbl 0946.57018
[45] DOI: 10.1007/978-3-662-12494-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.