×

zbMATH — the first resource for mathematics

Riemann-Hilbert correspondence for irregular holonomic \({\mathcal{D}}\)-modules. (English) Zbl 1351.32001
Summary: This is a survey paper on the Riemann-Hilbert correspondence on (irregular) holonomic \({\mathcal{D}}\)-modules, based on the 16th Takagi Lectures (2015/11/28). In this paper, we use subanalytic sheaves, an analogous notion to the one of indsheaves.

MSC:
32-02 Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces
32C38 Sheaves of differential operators and their modules, \(D\)-modules
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Artin, A. Grothendieck and J.L. Verdier, Théorie des Topos et Cohomologie Etale des Schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA4), Lecture Notes in Math., vol. 1, 269 (1972); vol. 2, 270 (1972); vol. 3, 305 (1973); Springer-Verlag. · Zbl 0234.00007
[2] Bierstone, E.; Milman, P.D., Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67, 5-42, (1988) · Zbl 0674.32002
[3] J.-E. Björk, Analytic \({{\mathscr{D}}}\)-modules and Applications, Math. Appl., 247, Kluwer Academic Publishers, Dordrecht, 1993. · Zbl 1337.32020
[4] A. D’Agnolo and M. Kashiwara, Riemann-Hilbert correspondence for holonomic \({{\mathscr{D}}}\)-modules, to appear in Publ. Math. Inst. Hautes Études Sci.; preprint, arXiv:1311.2374. · Zbl 0115.10203
[5] A. D’Agnolo and M. Kashiwara, Enhanced perversities, preprint, arXiv:1509.03791. · Zbl 0492.16002
[6] P. Deligne, Équations Différentielles à Points Singuliers réguliers, Lecture Notes in Math., 163, Springer-Verlag, 1970. · Zbl 0244.14004
[7] P. Deligne, B. Malgrange and J.-P. Ramis, Singularités Irrégulières, Correspondance Et Documents, Doc. Math. (Paris), 5, Soc. Math. France, 2007. · Zbl 1282.14037
[8] Gabber, O., The integrability of the characteristic variety, Amer. J. Math., 103, 445-468, (1981) · Zbl 0492.16002
[9] A.M. Gabrièlov, Projections of semianalytic sets. (Russian), Funkcional. Anal. i Priložen., 2, no. 4 (1968), 18-30. · Zbl 0401.32005
[10] H. Hironaka, Subanalytic sets, In: Number Theory, Algebraic Geometry and Commutative Algebra; in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 453-493. · Zbl 0313.58019
[11] R. Hotta, K. Takeuchi and T. Tanisaki, \({D}\)-modules, Perverse Sheaves, and Representation Theory, Progr. Math., 236, Birkhäuser, Boston, MA, 2008. · Zbl 1136.14009
[12] M. Kashiwara, Algebraic study of systems of partial differential equations, Master’s thesis, Univ. of Tokyo, 1970; Mém. Soc. Math. France (N.S.), 63, Soc. Math. France, 1995.
[13] Kashiwara, M., On the maximally overdetermined system of linear differential equations. I, Publ. Res. Inst. Math. Sci., 10, 563-579, (1974) · Zbl 0313.58019
[14] Kashiwara, M., On the holonomic systems of linear differential equations.II, Invent. Math., 49, 121-135, (1978) · Zbl 0401.32005
[15] M. Kashiwara, Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers, In: Séminaire Goulaouic-Schwartz, 1979-1980, 19, École Polytech., Palaiseau, 1980.
[16] Kashiwara, M., The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., 20, 319-365, (1984) · Zbl 0566.32023
[17] M. Kashiwara, \({D}\)-modules and Microlocal Calculus, Transl. Math. Monogr., 217, Amer. Math. Soc., Providence, RI, 2003.
[18] Kashiwara, M.; Kawai, T., On holonomic systems of microdifferential equations. III. systems with regular singularities, Publ. Res. Inst. Math. Sci., 17, 813-979, (1981) · Zbl 0505.58033
[19] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss., 292, Springer-Verlag, 1990.
[20] M. Kashiwara and P. Schapira, Moderate and Formal Cohomology Associated with Constructible Sheaves, Mém. Soc. Math. France (N.S.), 64, Soc. Math. France, 1996. · Zbl 0881.58060
[21] M. Kashiwara and P. Schapira, Ind-Sheaves, Astérisque, 271, Soc. Math. France, 2001. · Zbl 0674.32002
[22] M. Kashiwara and P. Schapira, Categories and Sheaves, Grundlehren Math. Wiss., 332, Springer-Verlag, 2006. · Zbl 1337.32020
[23] Kashiwara, M.; Schapira, P., Irregular holonomic kernels and Laplace transform, Selecta Math. (N.S.), 22, 55-109, (2016) · Zbl 1337.32020
[24] M. Kashiwara and P. Schapira, Lectures on Regular and Irregular Holonomic \({D}\)-modules, 2015, http://preprints.ihes.fr/2015/M/M-15-08.pdf; expanded version to appear in London Math. Soc. Lecture Note Ser. · Zbl 1354.32008
[25] Kedlaya, K.S., Good formal structures for flat meromorphic connections. I: surfaces, Duke Math. J., 154, 343-418, (2010) · Zbl 1204.14010
[26] Kedlaya, K.S., Good formal structures for flat meromorphic connections. II: excellent schemes, J. Amer. Math. Soc., 24, 183-229, (2011) · Zbl 1282.14037
[27] Łojasiewicz, S., Sur le problème de la division, Studia Math., 8, 87-136, (1959) · Zbl 0115.10203
[28] B. Malgrange, Ideals of Differentiable Functions, Tata Inst. Fund. Res. Stud. Math., 3, Tata Inst. Fund. Res., Oxford Univ. Press, London, 1967. · Zbl 0177.18001
[29] T. Mochizuki, Good formal structure for meromorphic flat connections on smooth projective surfaces, In: Algebraic Analysis and Around, Adv. Stud. Pure Math., 54, Math. Soc. Japan, Tokyo, 2009, pp. 223-253. · Zbl 1183.14027
[30] T. Mochizuki, Wild Harmonic Bundles and Wild Pure Twistor \({{\mathscr{D}}}\)-modules, Astérisque, 340, Soc. Math. France, 2011. · Zbl 1245.32001
[31] L. Prelli, Sheaves on subanalytic sites, Rend. Semin. Mat. Univ. Padova, 120 (2008), 167-216. · Zbl 1171.32002
[32] C. Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque, 263, Soc. Math. France, 2000. · Zbl 0947.32005
[33] C. Sabbah, Introduction to Stokes Structures, Lecture Notes in Math., 2060, Springer-Verlag, 2013. · Zbl 1260.34002
[34] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, In: Hyperfunctions and Pseudo-Differential Equations, Proc. of a Conference, Katata, 1971, (ed. H. Komatsu), Lecture Notes in Math., 287, Springer-Verlag, 1973, pp. 265-529. · Zbl 0277.46039
[35] J.-P. Schneiders, Un théorème de dualité relative pour les modules différentiels, C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 235-238. · Zbl 0605.14016
[36] D. Tamarkin, Microlocal condition for non-displaceability, preprint, arXiv:0809.1584. · Zbl 1416.35019
[37] L. van den Dries, Tame Topology and O-minimal Structures, London Math. Soc. Lecture Note Ser., 248, Cambridge Univ. Press, 1998. · Zbl 0953.03045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.