×

zbMATH — the first resource for mathematics

Transient analysis of fluid models via elementary level-crossing arguments. (English) Zbl 1350.60095
Summary: An analysis of the time-dependent evolution of the canonical Markov modulated fluid flow model is presented using elementary level-crossing arguments.

MSC:
60K25 Queueing theory (aspects of probability theory)
90B05 Inventory, storage, reservoirs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/S0166-5316(00)00020-1 · Zbl 1017.68011 · doi:10.1016/S0166-5316(00)00020-1
[2] DOI: 10.1081/STM-120023564 · Zbl 1021.60073 · doi:10.1081/STM-120023564
[3] DOI: 10.1081/STM-120028392 · Zbl 1038.60086 · doi:10.1081/STM-120028392
[4] Ahn S., QUESTA 49 pp 223– (2005)
[5] DOI: 10.1239/jap/1118777186 · Zbl 1085.60065 · doi:10.1239/jap/1118777186
[6] Anick D., Bell System Tech. J. 61 pp 1871– (1982)
[7] DOI: 10.1080/15326349508807330 · Zbl 0817.60086 · doi:10.1080/15326349508807330
[8] DOI: 10.1155/S1048953394000262 · Zbl 0826.60086 · doi:10.1155/S1048953394000262
[9] DOI: 10.1090/S0002-9947-1978-0511425-0 · doi:10.1090/S0002-9947-1978-0511425-0
[10] Çinlar E., Introduction to Stochastic Processes (1975)
[11] Karlin S., A Second Course in Stochastic Processes (1981) · Zbl 0469.60001
[12] Kobayashi H., IEICE Trans. Commun. 12 pp 1266– (1992)
[13] DOI: 10.2307/3214773 · Zbl 0789.60055 · doi:10.2307/3214773
[14] DOI: 10.1137/1.9780898719734 · Zbl 0922.60001 · doi:10.1137/1.9780898719734
[15] Neuts M.F., Matrix-Geometric Solutions in Stochastic Models – An Algorithmic Approach (1981) · Zbl 0469.60002
[16] Ramaswami , V. Passage times in fluid models with application to risk processes . 2005 , preprint . · Zbl 1110.60067
[17] Ramaswami V., Teletraffic Engineering in a Competitive World–Proc. of the 16th International Teletraffic Congress pp 1019– (1999)
[18] DOI: 10.1214/aoap/1177005065 · Zbl 0806.60052 · doi:10.1214/aoap/1177005065
[19] DOI: 10.2307/2321055 · Zbl 0378.60001 · doi:10.2307/2321055
[20] Scheinhardt , W. Markov-Modulated and Feedback Fluid Queues . Thesis, University of Twente, Enscheide : The Netherlands , 1998 .
[21] DOI: 10.1016/S0166-5316(98)00004-2 · doi:10.1016/S0166-5316(98)00004-2
[22] Da Silva Soares , A. ; Latouche , G. Matrix-analytic methods for fluid queues with finite buffers . Technical Report TR-509 ; Universite Libre de Bruxelles : Belgium , 2003 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.