×

zbMATH — the first resource for mathematics

Sparse normalized subband adaptive filter algorithm with \(l_0\)-norm constraint. (English) Zbl 1349.93385
Summary: In order to improve the filters performance when identifying sparse system, this paper develops two sparse-aware algorithms by incorporating the \(l_0\)-norm constraint of the weight vector into the conventional Normalized Subband Adaptive Filter (NSAF) algorithm. The first algorithm is obtained from the principle of the minimum perturbation; and the second one is based on the gradient descent principle. The resulting algorithms have almost the same convergence and steady-state performance while the latter saves computational complexity. Whats more, the performance of both algorithms is analyzed by resorting to some assumptions commonly used in the analyses of adaptive algorithms. Simulation results in the context of sparse system identification not only demonstrate the effectiveness of the proposed algorithms, but also verify the theoretical analyses.

MSC:
93E11 Filtering in stochastic control theory
93E10 Estimation and detection in stochastic control theory
93E25 Computational methods in stochastic control (MSC2010)
93E12 Identification in stochastic control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sayed, H., Fundamentals of adaptive filtering, (2003), Wiley New York
[2] Lee, K. A.; Gan, W. S.; Kuo, S. M., Subband adaptive filtering: theory and implementation, (2009), Wiley Hoboken, NJ
[3] H. Zhao, Y. Yu, S. Gao, X. Zeng, and Z. He, Memory proportionate APA with individual activation factors for acoustic echo cancellation, in: Proceedings of the IEEE/ACM IEEE Transaction Audio, Speech, Language Processing, vol. 22, 6, pp. 1047-1055, 2014.
[4] Lee, K. A.; Gan, W. S., Improving convergence of the NLMS algorithm using constrained subband updates, IEEE Signal Process. Lett., 11, 9, 736-739, (2004)
[5] K. A. Lee, W. S. Gan, and S. M. Kuo, Mean-square performance analysis of the normalized subband adaptive filter, in: Proceedings of the 40th Asilomar Conference on Signals, System, and Computers, 2006, pp. 248-252.
[6] Yin, W.; Mehr, A. S., Stochastic analysis of the normalized subband adaptive filter algorithm, IEEE Trans. Circuits Syst. I, 58, 5, 1020-1033, (2011)
[7] Lee, K. A.; Gan, W. S., Inherent decorrelating and least perturbation properties of the normalized subband adaptive filter, IEEE Trans. Signal Process., 54, 11, 4475-4480, (2006) · Zbl 1374.94532
[8] Ni, J.; Li, F., A variable step-size matrix normalized subband adaptive filter, IEEE Trans. Audio Speech Lang. Process., 18, 6, 1290-1299, (2010)
[9] Jeong, J. J.; Koo, K.; Choi, G. T.; Kim, S. W., A variable step size for normalized subband adaptive filters, IEEE Signal Process. Lett., 19, 12, 906-909, (2012)
[10] Yu, Y.; Zhao, H.; He, Z.; Chen, B., A robust band-dependent variable step size NSAF algorithm against impulsive noises, Signal Process., 119, 203-208, (2016)
[11] J. Radecki, Z. Zilic, and K. Radecka, Echo cancellation in IP networks, in: Proceedings of the 45th Midwest Symposium on Circuits Systems, 2002, vol. 2, pp. 219-222.
[12] Schreiber, W. F., Advanced television systems for terrestrial broadcasting: some problems and some proposed solutions, Proc. IEEE, 83, 958-981, (1995)
[13] Duttweiler, D. L., Proportionate normalized least mean squares adaptation in echo cancelers, IEEE Trans. Speech Audio Process., 8, 5, 508-518, (2000)
[14] J. Benesty and S. L. Gay, An improved PNLMS algorithm, in: Proceedings of the IEEE International Conference on Acoustic, Speech, Signal Processing (ICASSP’02), 2002, vol. 2, pp. 1881-1884.
[15] Deng, H.; Doroslovacki, M., Improving convergence of the PNLMS algorithm for sparse impulse response identification, IEEE Signal Process. Lett., 12, 3, 181-184, (2005)
[16] L. Liu, M. Fukumoto, and S. Saiki, An improved μ-law proportionate NLMS algorithm, in: Proceedings of the IEEE International Conference on Acoustic, Speech, Signal Processing (ICASSP’08), 2008, pp. 3797-3800.
[17] Abadi, M. S.E.; Kadkhodazadeh, S., A family of proportionate normalized subband adaptive filter algorithms, J. Frankl. Inst., 348, 2, 212-238, (2011) · Zbl 1208.94026
[18] Tibshirani, R., Regression shrinkage and selection via the LASSO, J. R. Stat. Soc. B, 58, 267-288, (1996) · Zbl 0850.62538
[19] Baraniuk, R., Compressive sensing, IEEE Signal Process. Mag., 25, 21-30, (2007)
[20] Y. Chen, Y. Gu, and A. O. Hero, Sparse LMS for identification, in: Proceedings of the IEEE International Conference on Acoustic, Speech, Signal Processing (ICASSP’09), Taipei, 2009, pp. 3125-3128.
[21] Gu, Y.; Jin, J.; Mei, S., l_0-norm constraint LMS algorithm for sparse system identification, IEEE Signal Process. Lett., 16, 9, 774-777, (2009)
[22] Su, G. L.; Jin, J.; Gu, Y.; Wang, J., Performance analysis of l_0-norm constraint least mean square algorithm, IEEE Trans. Signal Process., 60, 5, 2223-2235, (2012) · Zbl 1391.65112
[23] Meng, R.; de Lamare, R. C.; Nascimento, V. H., Sparsity aware affine projection adaptive algorithms for system identification, 1-5, (2011), in: Sensor Signal Processing for Defence (SSPD 2011) London, U.K
[24] M. V. S. Lima, W. A. Martins, and P. S. R. Diniz, Affine projection algorithms for sparse system identification, in: Proceedings of the IEEE International Conference on Acoustic, Speech, Signal Process (ICASSP’13), Vancouver, BC, pp. 5666-5670, 2013.
[25] Eksioglu, E. M.; Tanc, A. K., RLS algorithm with convex regularization, IEEE Signal Process. Lett., 18, 8, 470-473, (2011)
[26] Eksioglu, E. M., Sparsity regularized RLS adaptive filtering, IET Signal Process., 5, 5, 480-487, (2011)
[27] Liu, Y.; Li, C.; Zhang, Z., Diffusion sparse least-mean squares over networks, IEEE Trans. Signal Process., 60, 8, 4480-4485, (2012) · Zbl 1393.94692
[28] Choi, Y. S., Subband adaptive filtering with l_1-norm constraint for sparse system identification, Math. Probl. Eng., 2013, (2013), doi:10.1155/2013/601623
[29] Taheri; Vorobyov, S. A., Reweighted l_1-norm penalized LMS for sparse channel estimation and its analysis, Signal Process., 104, 70-79, (2014)
[30] Wu, F.; Tong, F., Gradient optimization p-norm-like constraint LMS algorithm for sparse system estimation, Signal Process., 93, 967-971, (2013)
[31] Wu, F.; Zhou, Y.; Tong, F.; Kastner, R., Simplified p-norm-like constraint LMS algorithm for efficient estimation of underwater acoustic channels, J. Mar. Sci. Appl., 12, 2, 228-234, (2013)
[32] D. Yin, H. C. So, and Y. Gu, Sparse constraint affine projection algorithm with parallel implementation and application in compressive sensing, in: Proceedings of the IEEE International Conference on Acoustic, Speech, Signal Processing ICASSP, 2014, pp. 7238-7242.
[33] Chen, B.; Xing, L.; Zhao, H.; Zheng, N.; Principe, J. C., Generalized correntropy for robust adaptive filtering, IEEE Trans. Signal Process., 64, 13, 3376-3387, (2016) · Zbl 1414.94113
[34] Chen, B.; Xing, L.; Liang, J.; Zheng, N.; Principe, J. C., Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion, IEEE Signal Process. Lett., 21, 7, 880-884, (2014)
[35] Wu, Z.; Peng, S.; Chen, B.; Zhao, H., Robust Hammerstein adaptive filtering under maximum correntropy criterion, Entropy, 17, 10, 7149-7166, (2015)
[36] Chen, B.; Wang, J.; Zhao, H.; Zheng, N.; Principe, J. C., Convergence of a fixed-point algorithm under maximum correntropy criterion, IEEE Signal Process. Lett., 22, 10, 1723-1727, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.