×

A general framework for multi-compartmental analysis of drug chemotherapy dynamics in human immunodeficiency virus type-1 infected individuals. (English) Zbl 1349.92097

Summary: An optimal control strategy for the highly active antiretroviral therapy associated to the acquired immunodeficiency syndrome should be designed regarding a comprehensive analysis of the drug chemotherapy behavior in the host tissues, from major viral replication sites to viral sanctuary compartments. Such approach is critical in order to efficiently explore synergistic, competitive and prohibitive relationships among drugs and, hence, therapy costs and side-effect minimization. In this paper, a novel mathematical model for HIV-1 drug chemotherapy dynamics in distinct host anatomic compartments is proposed and theoretically evaluated on fifteen conventional anti-retroviral drugs. Rather than interdependence between drug type and its concentration profile in a host tissue, simulated results suggest that such profile is importantly correlated with the host tissue under consideration. Furthermore, the drug accumulative dynamics are drastically affected by low patient compliance with pharmacotherapy, even when a single dose lacks.

MSC:

92C60 Medical epidemiology
45J05 Integro-ordinary differential equations
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kirschner, D.; Lenhart, S.; Serbin, S., Optimal control of the chemotherapy of HIV, J. Math. Biol., 35, 775-792 (1997) · Zbl 0876.92016
[2] Joly, M.; Pinto, J. M., The role of mathematical modeling on the optimal control of HIV-1 pathogenesis, AIChE J., 52, 3, 1-28 (2005)
[3] M. Joly, Mathematical modeling, optimal operation and scheduling of reactive dynamic systems, University of São Paulo, Ph.D. Thesis, São Paulo (Brazil), 2004 (in Portuguese).; M. Joly, Mathematical modeling, optimal operation and scheduling of reactive dynamic systems, University of São Paulo, Ph.D. Thesis, São Paulo (Brazil), 2004 (in Portuguese).
[4] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 12, 123-126 (1995)
[5] Wei, X.; Ghosh, S. K.; Taylor, M. E.; Johnson, V. A.; Emini, E. A.; Deutsch, P.; Lifson, J. D.; Bonheffer, S.; Nowak, M. A.; Hahn, B. H.; Saag, M. S.; Shaw, G. M., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 12, 117-122 (1995)
[6] Goldstein, H.; Pettoello-Mantovani, M.; Katopodis, N. F.; Kim, A.; Yurasov, S.; Kollmann, T. R., SCID-hu mice: a model for studying disseminated HIV infection, Immunology, 8, 223-231 (1996)
[7] Hraba, T.; Dolezal, J., A mathematical model and CD4 lymphocyte dynamics in HIV infection, Emerg. Infect. Dis., 2, 4, 299-305 (1996)
[8] McLean, A. R., Modelling T cell memory, J. Theor. Biol., 170, 63-74 (1994)
[9] Ding, A. A.; Wu, H., Relationships between antiviral treatment effects and biphasic viral decay rates in modeling HIV dynamics, Math. Biosci., 160, 63-82 (1999) · Zbl 0944.92024
[10] Stilianakis, N. I.; Boucher, C. A.B.; Jong, M. D.; Leeuwen, R. V.; Shuurman, R.; Boer, R. J., Clinical data sets of human immunodeficiency virus type 1 reverse transcriptase-resistant mutants explained by a mathematical model, J. Virol., 71, 1, 161-168 (1997)
[11] Murray, J. M.; Kaufmann, G.; Kelleher, A. D.; Cooper, D. A., A model of primary HIV-1 infection, Math. Biosci., 154, 57-85 (1998) · Zbl 0938.92020
[12] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 1, 3-44 (1999) · Zbl 1078.92502
[13] Müller, V.; Marée, A. F.M.; De Boer, R. J., Release of virus from lymphoid tissue affects human immunodeficiency virus type 1 and hepatitis C virus kinetics in the blood, J. Virol., 75, 6, 2597-2603 (2001)
[14] Wein, L. M.; D’Amato, R. M.; Perelson, A. S., Mathematical analysis of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads, J. Theor. Biol., 192, 81-98 (1998)
[15] Van’t Wout, A. B.; Ran, L. J.; Kuiken, C. L.; Kooststra, N. A.; Pals, S. T.; Schuitemaker, H., Analysis of the temporal relationship between human immunodeficiency virus Type 1 quasispecies in sequential blood samples and various organs obtained at autopsy, J. Virol., 72, 1, 488-496 (1998)
[16] Wodarz, D.; Nowak, M. A., Specific therapy regimes could lead to long-term immunological control of HIV, PNAS-USA, 96, 25, 14464-14469 (1999)
[17] Pantaleo, G.; Graziosi, C.; Butini, L.; Pizzo, P. A.; Schnittman, S. M.; Kotler, D. P.; Fauci, A. S., Lymphoid organs function as major reservoirs for human immunodeficiency virus, PNAS-USA, 88, 9838-9842 (1991)
[18] Lin, J. H.; Lu, A. Y.H., Role of pharmacokinetics and metabolism in drug discovery and development, Pharmacol. Rev., 49, 4, 403-449 (1997)
[19] Flint, S. J.; Enquist, L. W.; Krug, R. M.; Racaniello, V. R.; Skalka, A. M., Principles of Virology - Molecular Biology, Pathogenesis, and Control (2000), ASM Press: ASM Press Washington
[20] Albright, A. V.; Shieh, J. T.C.; Itoh, T.; Lee, B.; Pleasure, D.; O’Connor, M. J.; Doms, R. W.; González-Scarano, F., Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates, J. Virol., 73, 1, 202-213 (1999)
[21] Kepler, T. B.; Perelson, A. S., Drug concentration heterogeneity facilitates the evolution of drug resistance, PNAS-USA, 95, 11514-11519 (1998) · Zbl 0919.92023
[22] Pantaleo, G.; Graziosi, C.; Demarest, J. F.; Butini, L.; Montroni, M.; Fox, C. H.; Orenstein, J. M.; Kotler, D. P.; Fauci, A. S., HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature, 362, 355-358 (1993)
[23] Clapham, P. R.; McKnight, A., HIV-1 receptors and cell tropism, Br. Med. Bull., 58, 1, 43-59 (2001)
[24] Platt, E. J.; Wehrly, K.; Kuhmann, S. E.; Chesebro, B.; Kabat, D., Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1, J. Virol., 72, 4, 2855-2864 (1998)
[25] Esté, J. A.; Cabrera, C.; Blanco, J.; Gutierrez, A.; Bridger, G.; Henson, G.; Clotet, B.; Schols, D.; De Clercq, E., Shift of clinical human immunodeficiency virus type 1 isolates from X4 to R5 prevention of emergence of the syncytium-inducing phenotype by blockade of CXCR4, J. Virol., 73, 7, 5577-5585 (1999)
[26] Lee, S.; Lapham, C. K.; Chen, H.; King, L.; Manischewitz, J.; Romantseva, T.; Mostowski, H.; Stantchev, T. S.; Broder, C. C.; Golding, H., Coreceptor competition for association with CD4 may change the susceptibility of human immunodeficiency virus type 1, J. Virol., 74, 11, 5016-5023 (2000)
[27] Joly, M.; Pinto, J. M., CXCR4 and CCR5 regulation and expression patterns on T- and monocyte-macrophage cell lineages: implications for susceptibility to infection by HIV-1, Math. Biosc., 195, 1, 92-126 (2005) · Zbl 1065.92027
[28] Gunaratna, C., Drug metabolism and pharmacokinetics in drug discovery: a primer for bioanalytical chemists - Part II, Current Separat., 19, 3, 87-92 (2001)
[29] Hsu, A.; Granneman, R.; Witt, G.; Locke, C.; Denissen, J.; Molla, A.; Valdes, J.; Smith, J.; Erdman, K.; Lyons, N.; Niu, P.; Decourt, J.; Fourtillan, J.; Girault, J.; Leonard, J. M., Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects, Antimicrob. Agents Chemother., 41, 5, 898-905 (1997)
[30] P.W. Nelson, Mathematical models of HIV pathogenesis and immunology, University of Washington, PhD Thesis, Washington DC, 1998.; P.W. Nelson, Mathematical models of HIV pathogenesis and immunology, University of Washington, PhD Thesis, Washington DC, 1998.
[31] Wang, L. H.; Chittick, G. E.; McDowell, J. A., Single-dose pharmacokinetics and safety of abacavir (1592U89), zidovudine, and lamivudine administered alone and in combination in adults with human immunodeficiency virus infection, Antimicrob. Agents Chemother., 43, 7, 1708-1715 (1999)
[32] Morse, G. D.; Fischl, M. A.; Shelton, M. J.; Cox, S. R.; Driver, M.; DeRemer, M., Single-dose pharmacokinetics of delavirdine mesylate and didanosine in patients with human immunodeficiency virus infection, Antimicrob. Agents Chemother., 41, 1, 169-174 (1997)
[33] Vanhove, G. F.; Kastrissios, H.; Gries, J.; Verotta, D.; Park, K.; Collier, A. C., Pharmacokinetics of saquinavir, zidovudine, and zalcitabine in combination therapy, Antimicrob. Agents Chemother., 41, 11, 2428-2432 (1997)
[34] Fletcher, C. V.; Brundage, R. C.; Remmel, R. P.; Page, L. M.; Weller, D.; Calles, N. R.; Simon, C.; Kline, M. W., Pharmacologic characteristics of indinavir, didanosine, and stavudine in human immunodeficiency virus-infected children receiving combination therapy, Antimicrob. Agents Chemother., 44, 4, 1029-1034 (2000)
[35] Kilby, J. M.; Sfakianos, G.; Gizzi, N.; Siemon-Hryczyk, P.; Ehrensing, E.; Oo, C., Safety and pharmacokinetics of once-daily regimens of soft-gel capsule saquinavir plus minidose ritonavir in human immunodeficiency virus-negative adults, Antimicrob. Agents Chemother., 44, 10, 2672-2678 (2000)
[36] McDowell, J. A.; Lou, Y.; Symonds, W. S.; Stein, D. S., Multiple-dose pharmacokinetics and pharmacodynamics of abacavir alone and in combination with zidovudine in human immunodeficiency virus-infected adults, Antimicrob. Agents Chemother., 44, 8, 2061-2067 (2000)
[37] Glaxowellcome, Product Information: Ziagen®, abacavir sulfate tablets and oral solution, Research Triangle Park, NC, 2000. Available at: <http://www.drugs.com/mmx/ziagen.html>; Glaxowellcome, Product Information: Ziagen®, abacavir sulfate tablets and oral solution, Research Triangle Park, NC, 2000. Available at: <http://www.drugs.com/mmx/ziagen.html>
[38] Glaxosmithkline, Product information: Agenerase® oral solution, amprenavir, Research Triangle Park, NC, 2001. Available at: <http://www.drugs.com/mmx/agenerase.html>; Glaxosmithkline, Product information: Agenerase® oral solution, amprenavir, Research Triangle Park, NC, 2001. Available at: <http://www.drugs.com/mmx/agenerase.html>
[39] Glaxosmithkline, Product Information: Epivir®, lamivudine tablets and oral solution, Research Triangle Park, NC, 2001. Available at: <http://www.drugs.com/mmx/lamivudine.html>; Glaxosmithkline, Product Information: Epivir®, lamivudine tablets and oral solution, Research Triangle Park, NC, 2001. Available at: <http://www.drugs.com/mmx/lamivudine.html>
[40] Glaxosmithkline, Product Information: Retrovir®, zidovudine injection, Research Triangle Park, NC, 2001. Available at: <http://www.drugs.com/mmx/retrovir.html>; Glaxosmithkline, Product Information: Retrovir®, zidovudine injection, Research Triangle Park, NC, 2001. Available at: <http://www.drugs.com/mmx/retrovir.html>
[41] Abbott Laboratoires, Product information: Kaletra™, lopinavir and ritonavir, North Chicago, Illinois, 2001. Available at: <http://www.drugs.com/mmx/kaletra.html>; Abbott Laboratoires, Product information: Kaletra™, lopinavir and ritonavir, North Chicago, Illinois, 2001. Available at: <http://www.drugs.com/mmx/kaletra.html>
[42] Abbott Laboratoires, Product Information: Kaletra™, lopinavir and ritonavir, North Chicago, Illinois, 2001. Available at: <http://www.drugs.com/mmx/lopinavir-and-ritonavir.html>; Abbott Laboratoires, Product Information: Kaletra™, lopinavir and ritonavir, North Chicago, Illinois, 2001. Available at: <http://www.drugs.com/mmx/lopinavir-and-ritonavir.html>
[43] Boehringer Ingelheim Pharmaceuticals, Product Information: Viramune ®, nevirapine, Ridgefield, CT, 2003. Available at: <http://www.drugs.com/mmx/viramune.html>; Boehringer Ingelheim Pharmaceuticals, Product Information: Viramune ®, nevirapine, Ridgefield, CT, 2003. Available at: <http://www.drugs.com/mmx/viramune.html>
[44] Sadler, B. M.; Gillotin, C.; Lou, Y.; Stein, D. S., Pharmacokinetic and pharmacodynamic study of the human immunodeficiency virus protease inhibitor amprenavir after multiple oral dosing, Antimicrob. Agents Chemother., 45, 1, 30-37 (2001)
[45] Borg, N.; Stahle, L., Pharmacokinetics and distribution over the blood-brain barrier of zalcitabine (2’,3’-dideoxycytidine) and BEA005 (2’,3’-dideoxy-3’-hydroxymethylcytidine) in rats, studied by microdialysis, Antimicrob. Agents Chemother., 42, 9, 2174-2177 (1998)
[46] Boucher, C. A.B., (Human immunodeficiency viruses and human T-lymphotropic viruses. Human immunodeficiency viruses and human T-lymphotropic viruses, Antiviral Agents and Human Viral Diseases (1997), Lippincott-Raven Publishers: Lippincott-Raven Publishers Philadelphia)
[47] McDowell, J. A.; Chittick, G. E.; Ravitch, J. R.; Polk, R. E.; Kerkering, T. M.; Stein, D. S., Pharmacokinetics of \([^{14}C]\) abacavir, a human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitor, administered in a single oral dose to HIV-1-infected adults: a mass balance study, Antimicrob. Agents Chemother., 43, 12, 2855-2861 (1999)
[48] Wu, J. Y.F.; Leung, W. Y.S.; Chang, S.; Lee, B.; Zee, B.; Tong, P. C.Y.; Chan, J. C.N., Effectiveness of telephone counseling by a pharmacist in reducing mortality in patients receiving polypharmacy: randomized controlled trial, BMJ, 333, 7567, 522-525 (2006)
[49] Barth, N.; Alan, G.; Borga, O.; Sjoqvist, F., Two-fold interindividual variation in plasma protein binding of phenytoin in patients with epilepsy, Clin. Pharmacokinet., 1, 441-452 (1976)
[50] International Association of Physicians in AIDS Care, Available at: <http://www.iapac.org>; International Association of Physicians in AIDS Care, Available at: <http://www.iapac.org>
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.