×

zbMATH — the first resource for mathematics

Enhanced gauge symmetry in 6D F-theory models and tuned elliptic Calabi-Yau threefolds. (English) Zbl 1349.81157
Summary: We systematically analyze the local combinations of gauge groups and matter that can arise in 6D F-theory models over a fixed base. We compare the low-energy constraints of anomaly cancellation to explicit F-theory constructions using Weierstrass and Tate forms, and identify some new local structures in the “swampland” of 6D supergravity and SCFT models that appear consistent from low-energy considerations but do not have known F-theory realizations. In particular, we classify and carry out a local analysis of all enhancements of the irreducible gauge and matter contributions from “non-Higgsable clusters,” and on isolated curves and pairs of intersecting rational curves of arbitrary self-intersection. Such enhancements correspond physically to unHiggsings, and mathematically to tunings of the Weierstrass model of an elliptic CY threefold. We determine the shift in Hodge numbers of the elliptic threefold associated with each enhancement. We also consider local tunings on curves that have higher genus or intersect multiple other curves, codimension two tunings that give transitions in the F-theory matter content, tunings of abelian factors in the gauge group, and generalizations of the “\(E_{8}\)” rule to include tunings and curves of self-intersection zero. These tools can be combined into an algorithm that in principle enables a finite and systematic classification of all elliptic CY threefolds and corresponding 6D F-theory SUGRA models over a given compact base (modulo some technical caveats in various special circumstances), and are also relevant to the classification of 6D SCFT’s. To illustrate the utility of these results, we identify some large example classes of known CY threefolds in the Kreuzer-Skarke database as Weierstrass models over complex surface bases with specific simple tunings, and we survey the range of tunings possible over one specific base.
Reviewer: Reviewer (Berlin)

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T50 Anomalies in quantum field theory
83E50 Supergravity
83E15 Kaluza-Klein and other higher-dimensional theories
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
14J30 \(3\)-folds
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J27 Elliptic surfaces, elliptic or Calabi-Yau fibrations
14H81 Relationships between algebraic curves and physics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Vafa, Evidence for F-Theory, Nucl. Phys. B 469 pp 403– (1996) · Zbl 1003.81531 · doi:10.1016/0550-3213(96)00172-1
[2] Morrison, Compactifications of F-Theory on Calabi-Yau Threefolds - I, Nucl. Phys. B 473 pp 74– (1996) · Zbl 0925.14005 · doi:10.1016/0550-3213(96)00242-8
[3] Morrison, Compactifications of F-Theory on Calabi-Yau Threefolds - II, Nucl. Phys. B 476 pp 437– (1996) · Zbl 0925.14007 · doi:10.1016/0550-3213(96)00369-0
[4] Heckman, Particle Physics Implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 pp 237– (2010) · doi:10.1146/annurev.nucl.012809.104532
[5] Weigand, Lectures on F-theory Compactifications and Model Building, Class. Quant. Grav. 27 pp 214004– (2010) · Zbl 1204.83007 · doi:10.1088/0264-9381/27/21/214004
[6] Green, Anomaly Free Chiral Theories In Six-Dimensions, Nucl. Phys. B 254 pp 327– (1985) · doi:10.1016/0550-3213(85)90222-6
[7] Sagnotti, A Note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 pp 196– (1992) · doi:10.1016/0370-2693(92)90682-T
[8] Grassi, Group representations and the Euler characteristic of elliptically fibered Calabi-Yau threefolds, J. Algebraic Geom. 12 pp 321– (2003) · Zbl 1080.14534 · doi:10.1090/S1056-3911-02-00337-5
[9] Kumar, Mapping 6D N=1 supergravities to F-theory, JHEP 1002 pp 099– (2010) · Zbl 1270.81181 · doi:10.1007/JHEP02(2010)099
[10] Kumar, Global aspects of the space of 6D N=1 supergravities, JHEP 1011 pp 118– (2010) · Zbl 1294.81212 · doi:10.1007/JHEP11(2010)118
[11] Grassi, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys. 6 pp 51– (2012) · Zbl 1270.81174 · doi:10.4310/CNTP.2012.v6.n1.a2
[12] T. W. Grimm A. Kapfer Anomaly Cancelation in Field Theory and F-theory on a Circle arXiv:1502.05398 [hep-th]
[13] Seiberg, Comments on String Dynamics in Six Dimensions, Nucl. Phys. B 471 pp 121– (1996) · Zbl 1003.81535 · doi:10.1016/0550-3213(96)00189-7
[14] Morrison, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 pp 1072– (2012)
[15] Morrison, Toric bases for 6D F-theory models, Fortsch. Phys. 60 pp 1187– (2012) · Zbl 1255.81210 · doi:10.1002/prop.201200086
[16] Martini, 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces, JHEP 1506 pp 061– (2015) · Zbl 1388.83862 · doi:10.1007/JHEP06(2015)061
[17] W. Taylor Y. Wang Non-toric bases for elliptic Calabi-Yau Threefolds and 6D F-theory Vacua arXiv:1504.07689
[18] Johnson, Calabi-Yau Threefolds with Large h2, 1, JHEP 1410 pp 23– (2014) · Zbl 1333.81384 · doi:10.1007/JHEP10(2014)023
[19] Heckman, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 1405 pp 028– (2014) · Zbl 06564935 · doi:10.1007/JHEP05(2014)028
[20] Heckman, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 pp 468– (2015) · Zbl 1338.81326 · doi:10.1002/prop.201500024
[21] Nakayama, Algebraic geometry and commutative algebra, Vol. II pp 405– (1988) · doi:10.1016/B978-0-12-348032-3.50004-9
[22] Grassi, On minimal models of elliptic threefolds, Math. Ann. 290 pp 287– (1991) · Zbl 0719.14006 · doi:10.1007/BF01459246
[23] Gross, A finiteness theorem for elliptic Calabi-Yau threefolds, Duke Math. Jour. 74 pp 271– (1994) · Zbl 0838.14033 · doi:10.1215/S0012-7094-94-07414-0
[24] Kumar, String Universality in Six Dimensions, Adv. Theor. Math. Phys. 15 (2) pp 325– (2011) · Zbl 1259.81062 · doi:10.4310/ATMP.2011.v15.n2.a3
[25] C. Vafa The string landscape and the swampland arXiv:hep-th/0509212
[26] D. R. Morrison T. Rudelius F-theory and Unpaired Tensors in 6D SCFTs and LSTs arXiv:1605.08045 [hep-th] · Zbl 1349.81161
[27] D. R. Morrison TASI lectures on compactification and duality hep-th/0411120
[28] F. Denef Les Houches Lectures on Constructing String Vacua arXiv:0803.1194 [hep-th]
[29] W. Taylor TASI Lectures on Supergravity and String Vacua in Various Dimensions arXiv:1104.2051 [hep-th]
[30] Barth, Compact complex surfaces (2004) · doi:10.1007/978-3-642-57739-0
[31] Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (1972)
[32] Lecture Notes in Math., vol. 476 pp 33– (1975)
[33] Bershadsky, Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 pp 215– (1996) · Zbl 1049.81581 · doi:10.1016/S0550-3213(96)90131-5
[34] Katz, Tate’s Algorithm and F-theory, JHEP 1108 pp 094– (2012)
[35] Morrison, Matter and singularities, JHEP 1201 pp 022– (2012) · Zbl 1306.81261 · doi:10.1007/JHEP01(2012)022
[36] Cvetic, General U(1)xU(1) F-theory Compactifications and Beyond: Geometry of unHiggsings and novel Matter Structure, JHEP 1511 pp 204– (2015) · Zbl 1388.81170 · doi:10.1007/JHEP11(2015)204
[37] Anderson, Matter in transition, JHEP 1604 pp 080– (2016) · Zbl 1388.81022 · doi:10.1007/JHEP04(2016)080
[38] D. Klevers W. Taylor Three-Index Symmetric Matter Representations of SU(2) in F-Theory from Non-Tate Form Weierstrass Models arXiv:1604.01030 [hep-th] · Zbl 1390.83407
[39] Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. (2) 76 pp 560– (1962) · Zbl 0124.37001 · doi:10.2307/1970376
[40] Morrison, Non-Higgsable clusters for 4D F-theory models, JHEP 1505 pp 080– (2015) · Zbl 1388.81871 · doi:10.1007/JHEP05(2015)080
[41] William Fulton, Annals of Mathematics Study 131 (1993)
[42] Erler, Anomaly Cancellation In Six-Dimensions, J. Math. Phys. 35 pp 1819– (1994) · Zbl 0803.58060 · doi:10.1063/1.530885
[43] Kumar, A bound on 6D N=1 supergravities, JHEP 0912 pp 050– (2009) · doi:10.1088/1126-6708/2009/12/050
[44] Bonetti, Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds, JHEP 1205 pp 019– (2012) · Zbl 1348.81353 · doi:10.1007/JHEP05(2012)019
[45] Taylor, On the Hodge structure of elliptically fibered Calabi-Yau threefolds, JHEP 1208 pp 032– (2012) · Zbl 1397.14048 · doi:10.1007/JHEP08(2012)032
[46] Wazir, Arithmetic on elliptic threefolds, Compos. Math. 140 pp 567– (2004) · Zbl 1060.11039 · doi:10.1112/S0010437X03000381
[47] P. Berglund Y. Huang H. Smith W. Taylor Y. Wang
[48] Danielsson, Exceptional equivalences in N=2 supersymmetric Yang-Mills theory, Phys. Lett. B 370 pp 83– (1996) · doi:10.1016/0370-2693(95)01566-3
[49] Avram, Searching for K3 fibrations, Nucl. Phys. B 494 pp 567– (1997) · Zbl 0951.81060 · doi:10.1016/S0550-3213(97)00214-9
[50] Candelas, An Abundance of K3 Fibrations from Polyhedra with Interchangeable Parts, Commun. Math. Phys. 324 pp 937– (2013) · Zbl 1284.14051 · doi:10.1007/s00220-013-1802-2
[51] Gray, Topological Invariants and Fibration Structure of Complete Intersection Calabi-Yau Four-Folds, JHEP 1409 pp 093– (2014) · Zbl 06565552 · doi:10.1007/JHEP09(2014)093
[52] Anderson, A New Construction of Calabi-Yau Manifolds: Generalized CICYs, Nucl. Phys. B 906 pp 441– (2016) · Zbl 1334.14023 · doi:10.1016/j.nuclphysb.2016.03.016
[53] Esole, Small resolutions of SU(5)-models in F-theory, Adv. Theor. Math. Phys. 17 (6) pp 1195– (2013) · Zbl 1447.81171 · doi:10.4310/ATMP.2013.v17.n6.a1
[54] Lawrie, The Tate Form on Steroids: Resolution and Higher Codimension Fibers, JHEP 1304 pp 061– (2013) · Zbl 1342.81302 · doi:10.1007/JHEP04(2013)061
[55] Hayashi, Phases, Flops and F-theory: SU(5) Gauge Theories, JHEP 1310 pp 046– (2013) · Zbl 1342.81289 · doi:10.1007/JHEP10(2013)046
[56] Hayashi, Box Graphs and Singular Fibers, JHEP 1405 pp 048– (2014) · Zbl 1333.81369 · doi:10.1007/JHEP05(2014)048
[57] M. Esole S. H. Shao S. T. Yau Singularities and Gauge Theory Phases arXiv:1402.6331 [hep-th] arXiv:1407.1867 [hep-th]
[58] Braun, Box Graphs and Resolutions I, Nucl. Phys. B 905 pp 447– (2016) · Zbl 1332.81127 · doi:10.1016/j.nuclphysb.2016.02.002
[59] Kreuzer, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 pp 1209– (2002) · Zbl 1017.52007 · doi:10.4310/ATMP.2000.v4.n6.a2
[60] M. Kreuzer H. Skarke http://hep.itp.tuwien.ac.at/kreuzer/CY/
[61] Katz, Matter from geometry, Nucl. Phys. B 497 pp 146– (1997) · Zbl 0935.81056 · doi:10.1016/S0550-3213(97)00280-0
[62] Ohmori, 6d N=(1,0) theories on S1/T2 and class S theories: part II, JHEP 1512 pp 131– (2015) · Zbl 06879463 · doi:10.1007/JHEP12(2015)131
[63] Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 pp 1– (1990) · Zbl 0722.14021 · doi:10.1007/BF02571223
[64] Miranda, Persson’s list of singular fibers for a rational elliptic surface, Math. Z. 205 pp 191– (1990) · Zbl 0722.14022 · doi:10.1007/BF02571235
[65] D. Morrison D. Park W. Taylor
[66] M. Bertolini P. R. Merkx D. R. Morrison On the global symmetries of 6D conformal theories arXiv:1510.08056
[67] Witten, Phase Transitions in M-theory and F-theory, Nucl. Phys. B 471 pp 195– (1996) · Zbl 1003.81537 · doi:10.1016/0550-3213(96)00212-X
[68] N. Raghuram
[69] Schwarz, Anomaly-Free Supersymmetric Models in Six Dimensions, Phys. Lett. B 371 pp 223– (1996) · doi:10.1016/0370-2693(95)01610-4
[70] Bhardwaj, F-theory and the Classification of Little Strings, Phys. Rev. D 93 (8) pp 086002– (2016) · doi:10.1103/PhysRevD.93.086002
[71] Sadov, Generalized Green-Schwarz mechanism in F theory, Phys. Lett. B 388 pp 45– (1996) · doi:10.1016/0370-2693(96)01134-3
[72] Kumar, 6D supergravity without tensor multiplets, JHEP 1104 pp 080– (2011) · Zbl 1250.83058 · doi:10.1007/JHEP04(2011)080
[73] Morrison, F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds, JHEP 1210 pp 128– (2012) · Zbl 1397.81389 · doi:10.1007/JHEP10(2012)128
[74] D. R. Morrison W. Taylor Sections, multisections, and U(1) fields in F-theory arXiv:1404.1527 [hep-th]
[75] Klevers, F-Theory on all Toric Hypersurface Fibrations and its Higgs Branches, JHEP 1501 pp 142– (2015) · Zbl 1388.81563 · doi:10.1007/JHEP01(2015)142
[76] T. W. Grimm A. Kapfer D. Klevers The Arithmetic of Elliptic Fibrations in Gauge Theories on a Circle arXiv:1510.04281 [hep-th]
[77] Lawrie, F-theory and All Things Rational: Surveying U(1) Symmetries with Rational Sections, JHEP 1509 pp 144– (2015) · Zbl 1388.81856 · doi:10.1007/JHEP09(2015)144
[78] Park, Constraints on 6D Supergravity Theories with Abelian Gauge Symmetry, JHEP 1201 pp 141– (2012) · Zbl 1306.81269 · doi:10.1007/JHEP01(2012)141
[79] Park, Anomaly Equations and Intersection Theory, JHEP 1201 pp 093– (2012) · Zbl 1306.81268 · doi:10.1007/JHEP01(2012)093
[80] Mayrhofer, U(1) symmetries in F-theory GUTs with multiple sections, JHEP 1303 pp 098– (2013) · Zbl 1342.81733 · doi:10.1007/JHEP03(2013)098
[81] Braun, New Global F-theory GUTs with U(1) symmetries, JHEP 1309 pp 154– (2013)
[82] Borchmann, Elliptic fibrations for SU(5)\(\times\)U(1)\(\times\)U(1) F-theory vacua, Phys. Rev. D 88 (4) pp 046005– (2013) · doi:10.1103/PhysRevD.88.046005
[83] Cvetic, F-Theory Compactifications with Multiple U(1)-Factors: Constructing Elliptic Fibrations with Rational Sections, JHEP 1306 pp 067– (2013) · Zbl 1342.81414 · doi:10.1007/JHEP06(2013)067
[84] Cvetic, Chiral Four-Dimensional F-Theory Compactifications With SU(5) and Multiple U(1)-Factors, JHEP 1404 pp 010– (2014) · Zbl 06564642 · doi:10.1007/JHEP04(2014)010
[85] Borchmann, SU(5) Tops with Multiple U(1)s in F-theory, Nucl. Phys. B 882 pp 1– (2014) · Zbl 1285.81053 · doi:10.1016/j.nuclphysb.2014.02.006
[86] Cvetic, Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1) x U(1) x U(1) gauge symmetry, JHEP 1403 pp 021– (2014) · Zbl 06564490 · doi:10.1007/JHEP03(2014)021
[87] Klemm, Calabi-Yau fourfolds for M theory and F theory compactifications, Nucl. Phys. B518 pp 515– (1998) · Zbl 0920.14016 · doi:10.1016/S0550-3213(97)00798-0
[88] Mayrhofer, Mordell-Weil Torsion and the Global Structure of Gauge Groups in F-theory, JHEP 1410 pp 16– (2014) · Zbl 1333.81264 · doi:10.1007/JHEP10(2014)016
[89] Anderson, Physics of F-theory compactifications without section, JHEP 1412 pp 156– (2014) · Zbl 1333.81299 · doi:10.1007/JHEP12(2014)156
[90] Garcia-Etxebarria, Yukawas and discrete symmetries in F-theory compactifications without section, JHEP 1411 pp 125– (2014) · Zbl 1333.81332 · doi:10.1007/JHEP11(2014)125
[91] Mayrhofer, On Discrete Symmetries and Torsion Homology in F-Theory, JHEP 1506 pp 029– (2015) · Zbl 1388.81353 · doi:10.1007/JHEP06(2015)029
[92] Mayrhofer, Discrete Gauge Symmetries by Higgsing in four-dimensional F-Theory Compactifications, JHEP 1412 pp 068– (2014) · Zbl 06566077 · doi:10.1007/JHEP12(2014)068
[93] Cvetic, F-theory vacua with Z3 gauge symmetry, Nucl. Phys. B 898 pp 736– (2015) · Zbl 1329.81309 · doi:10.1016/j.nuclphysb.2015.07.011
[94] Grimm, Non-Abelian discrete gauge symmetries in F-theory, JHEP 1602 pp 066– (2016) · Zbl 1388.81322 · doi:10.1007/JHEP02(2016)066
[95] P. K. Oehlmann J. Reuter T. Schimannek Mordell-Weil Torsion in the Mirror of Multi-Sections arXiv:1604.00011 [hep-th] · Zbl 1390.81460
[96] Y. Huang W. Taylor
[97] Anderson, Geometric constraints in dual F-theory and heterotic string compactifications, JHEP 1408 pp 025– (2014) · Zbl 06565482 · doi:10.1007/JHEP08(2014)025
[98] Halverson, P1-bundle bases and the prevalence of non-Higgsable structure in 4d F-theory models, JHEP 1509 pp 086– (2015) · Zbl 1388.81722 · doi:10.1007/JHEP09(2015)086
[99] Grimm, Structure in 6D and 4d N=1 supergravity theories from F-theory, JHEP 1210 pp 105– (2012) · Zbl 1397.81249 · doi:10.1007/JHEP10(2012)105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.