×

zbMATH — the first resource for mathematics

Peridynamic thermal diffusion. (English) Zbl 1349.80020
Summary: This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Tien, C. L.; Chen, G., Challenges in microscale conductive and radiative heat-transfer, J. Heat Transfer Trans. ASME, 116, 799-807, (1994)
[2] Luciani, J. F.; Mora, P.; Virmont, J., Nonlocal heat-transport due to steep temperature-gradients, Phys. Rev. Lett., 51, 1664-1667, (1983)
[3] Mahan, G. D.; Claro, F., Nonlocal theory of thermal-conductivity, Phys. Rev. B, 38, 1963-1969, (1988)
[4] Sobolev, S. L., Equations of transfer in nonlocal media, Int. J. Heat Mass Transf., 37, 2175-2182, (1994) · Zbl 0926.74007
[5] Lebon, G.; Grmela, M., Weakly nonlocal heat conduction in rigid solids, Phys. Lett. A, 214, 184-188, (1996)
[6] Grmela, M.; Lebon, G., Finite-speed propagation of heat: A nonlocal and nonlinear approach, Physica A, 248, 428-441, (1998)
[7] Chen, G., Ballistic-diffusive equations for transient heat conduction from nano to macroscales, J. Heat Transfer Trans. ASME, 124, 320-328, (2002)
[8] Alvarez, F. X.; Jou, D., Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes, Appl. Phys. Lett., 90, 083109, (2007)
[9] Tzou, D. Y.; Guo, Z., Non local behavior in thermal lagging, Int. J. Therm. Sci., 49, 1133-1137, (2010)
[10] Ozısık, M. N., Heat conduction, (1980), Wiley New York
[11] Duffey, R. B.; Porthous, D., Physics of rewetting in water reactor emergency core cooling, Nucl. Eng. Des., 25, 379-394, (1973)
[12] Dorfman, A. S., Transient heat transfer between a semi-infinite hot plate and a flowing cooling liquid film, J. Heat Transfer Trans. ASME, 126, 149-154, (2004)
[13] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175-209, (2000) · Zbl 0970.74030
[14] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elast., 88, 151-184, (2007) · Zbl 1120.74003
[15] Silling, S. A.; Lehoucq, R. B., Peridynamic theory of solid mechanics, (Aref, Hassan; van der Giessen, Erik, Adv. Appl. Mech., (2010), Elsevier), 73-168
[16] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 1526-1535, (2005)
[17] Gerstle, W.; Silling, S.; Read, D.; Tewary, V.; Lehoucq, R., Peridynamic simulation of electromigration, Comput. Mater. Continua, 8, 75-92, (2008)
[18] Bobaru, F.; Duangpanya, M., The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transf., 53, 4047-4059, (2010) · Zbl 1194.80010
[19] Bobaru, F.; Duangpanya, M., A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities, J. Comput. Phys., 231, 2764-2785, (2012) · Zbl 1253.80002
[20] Moiseiwitsch, B. L., Variational principles, (2004), Dover Mineola NY · Zbl 1099.49031
[21] Bathe, K., Finite element procedures, (1996), Prentice Hall Englewood Cliffs, NJ
[22] Agwai, A., A peridynamic approach for coupled fields, (2011), Department of Aerospace and Mechanical Engineering, University of Arizona, Ph.D. dissertation
[23] Jiji, M. L., Heat conduction, (2009), Springer · Zbl 1180.80001
[24] Hosseini-Tehrani, P.; Eslami, M. R., BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity, Eng. Anal. Bound. Elem., 24, 249-257, (2000) · Zbl 1163.74491
[25] Chang, C. Y.; Ma, C. C., Transient thermal conduction analysis of a rectangular plate with multiple insulated cracks by the alternating method, Int. J. Heat Mass Transf., 44, 2423-2437, (2001) · Zbl 1006.74028
[26] Chen, W. H.; Chang, C. L., Heat conduction analysis of a plate with multiple insulated cracks by the finite element alternating method, Int. J. Solids Struct., 31, 1343-1355, (1994) · Zbl 0945.74679
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.