×

Heat flux expressions that satisfy the conservation laws in atomistic system involving multibody potentials. (English) Zbl 1349.80014

Summary: Heat flux expressions are derived for multibody potential systems by extending the original Hardy’s methodology and modifying Admal & Tadmor’s formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i. e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic-continuum bridging.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Frenkel, D.; Smit, B., Understanding Molecular Simulation, Computational Science Series (2001), Academic: Academic New York
[2] Haile, J. M., Molecular Dynamics Simulation Elementary Methods (1992), Wiley: Wiley New York
[3] Rapaport, D. C., The Art of Molecular Dynamics Simulation (2004), Cambridge University Press: Cambridge University Press London · Zbl 1098.81009
[4] Kimmer, C. J.; Jones, R. E., Continuum constitutive models from analytical free energies, J. Phys. Condens. Matter, 19, 326207 (2007)
[5] Klein, P. A.; Zimmerman, J. A., Coupled atomistic-continuum simulations using arbitrary overlapping domains, J. Comput. Phys., 213, 86-116 (2006) · Zbl 1137.74367
[6] Shenoy, V. B.; Miller, R.; Tadmor, E. B.; Rodney, D.; Phillips, R.; Ortiz, M., An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method, J. Mech. Phys. Solids, 47, 611-642 (1999) · Zbl 0982.74071
[7] Tadmor, E. B.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Philos. Mag. A, 73, 1529-1563 (1996)
[8] Rudd, R. E.; Broughton, J. Q., Concurrent coupling of length scales in solid state systems, Phys. Status Solidi B, 217, 251-291 (2000)
[9] Shilkrot, L. E.; Miller, R. E.; Curtin, W. A., Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics, J. Mech. Phys. Solids, 52, 755-787 (2004) · Zbl 1049.74015
[10] Xiao, S. P.; Belytschko, T., A bridging domain method for coupling continua with molecular dynamics, Comput. Methods Appl. Mech. Eng., 193, 1645-1669 (2004) · Zbl 1079.74509
[11] Knap, J.; Ortiz, M., An analysis of the quasicontinuum method, J. Mech. Phys. Solids, 49, 1899-1923 (2001) · Zbl 1002.74008
[12] E, W.; Engquist, B.; Li, X.; Ren, W.; Vanden-Eijnden, E., Heterogeneous multiscale methods: a review, Commun. Comput. Phys., 2, 367-450 (2007) · Zbl 1164.65496
[13] Clausius, R., XVI. On a mechanical theorem applicable to heat, Philos. Mag. Ser. 4, 40, 122-127 (1870)
[14] Maxwell, J. C., On reciprocal figures, frames and diagrams of forces, Trans. R. Soc. Edinb., XXVI, 1-43 (1870)
[15] Maxwell, J. C., Van der Waals on the continuity of the gaseous and liquid states, Nature, 10, 477-480 (1874)
[16] Irving, J. H.; Kirkwood, J. G., The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys., 18, 817-829 (1950)
[17] Hardy, R. J., Formulas for determining local properties in molecular-dynamics simulations: shock waves, J. Chem. Phys., 76, 622-628 (1982)
[18] Root, S.; Hardy, R. J.; Swanson, D. R., Continuum predictions from molecular dynamics simulations: shock waves, J. Chem. Phys., 118, 3161-3165 (2003)
[19] Jones, R. E.; Zimmerman, J. A.; Oswald, J.; Belytschko, T., An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields, J. Phys. Condens. Matter, 23, 015002 (2011)
[20] Manfred, H. U.; Kranthi, K. M.; Panayiotis, P., On the estimation of spatial averaging volume for determining stress using atomistic methods, Model. Simul. Mater. Sci. Eng., 21, 015010 (2013)
[21] Zimmerman, J. A.; Jones, R. E.; Templeton, J. A., A material frame approach for evaluating continuum variables in atomistic simulations, J. Comput. Phys., 229, 2364-2389 (2010) · Zbl 1303.74005
[22] Zimmerman, J. A.; Webb, E. B.; Hoyt, J. J.; Jones, R. E.; Klein, P. A.; Bammann, D. J., Calculation of stress in atomistic simulation, Model. Simul. Mater. Sci. Eng., 12, S319 (2004)
[23] Chen, Y., Local stress and heat flux in atomistic systems involving three-body forces, J. Chem. Phys., 124, 054113 (2006)
[24] Tersoff, J., New empirical model for the structural properties of silicon, Phys. Rev. Lett., 56, 632 (1986)
[25] Tersoff, J., Modeling solid-state chemistry: interatomic potentials for multicomponent systems, Phys. Rev. B, 39, 5566(R) (1989)
[26] Stillinger, F. H.; Weber, T. A., Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 31, 5262 (1985)
[27] Delph, T. J., Conservation laws for multibody interatomic potentials, Model. Simul. Mater. Sci. Eng., 13, 585 (2005)
[28] Murdoch, A. I., The motivation of continuum concepts and relations from discrete considerations, Q. J. Mech. Appl. Math., 36, 163-187 (1983) · Zbl 0517.73004
[29] Murdoch, A. I.; Bedeaux, D., On the physical interpretation of fields in continuum mechanics, Int. J. Eng. Sci., 31, 1345-1373 (1993) · Zbl 0781.73003
[30] Murdoch, A. I.; Bedeaux, D., Continuum equations of balance via weighted averages of microscopic quantities, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 445, 157-179 (1994)
[31] Ian Murdoch, A., On the microscopic interpretation of stress and couple stress, (Man, C.-S.; Fosdick, R., The Rational Spirit in Modern Continuum Mechanics (2004), Springer: Springer Netherlands), 599-625
[32] Murdoch, A. I., A critique of atomistic definitions of the stress tensor, J. Elast., 88, 113-140 (2007) · Zbl 1120.74005
[33] Admal, N. C.; Tadmor, E. B., Stress and heat flux for arbitrary multibody potentials: a unified framework, J. Chem. Phys., 134, 184106 (2011)
[34] Fu, Y.; Song, J.-H., On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation, J. Chem. Phys., 141, 054108 (2014)
[35] Martin, J. W., Many-body forces in metals and the Brugger elastic constants, J. Phys. C, Solid State Phys., 8, 2837 (1975)
[36] Admal, N.; Tadmor, E. B., A unified interpretation of stress in molecular systems, J. Elast., 100, 63-143 (2010) · Zbl 1260.74005
[37] Ikeshoji, T.; Hafskjold, B., Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface, Mol. Phys., 81, 251-261 (1994)
[38] Webb, E. B.; Zimmerman, J. A.; Seel, S. C., Reconsideration of continuum thermomechanical quantities in atomic scale simulations, Math. Mech. Solids, 13, 221-266 (2008) · Zbl 1161.74306
[39] Fu, Y.; To, A. C., On the evaluation of Hardy’s thermomechanical quantities using ensemble and time averaging, Model. Simul. Mater. Sci. Eng., 21, 055015 (2013)
[41] Fu, Y.; To, A. C., A modification to Hardy’s thermomechanical theory for conserving fundamental properties more accurately: tensile and shear failures in iron, Model. Simul. Mater. Sci. Eng., 22, 015010 (2014)
[42] Fu, Y.; To, A. C., A modification to Hardy’s thermomechanical theory that conserves fundamental properties more accurately, J. Appl. Phys., 113, 233505 (2013)
[43] CRC Handbook of Chemistry and Physics (2014), William M. Haynes (Editor in Chief)
[44] Brown, D.; Clarke, J. H.R., Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology, Macromolecules, 24, 2075-2082 (1991)
[45] Capaldi, F. M.; Boyce, M. C.; Rutledge, G. C., Molecular response of a glassy polymer to active deformation, Polymer, 45, 1391-1399 (2004)
[46] Li, Y.; Kröger, M.; Liu, W. K., Nanoparticle geometrical effect on structure, dynamics and anisotropic viscosity of polyethylene nanocomposites, Macromolecules, 45, 2099-2112 (2012)
[47] Fu, Y.; Song, J.-H., Large deformation mechanism of glassy polyethylene polymer nanocomposites: coarse grain molecular dynamics study, Comput. Mater. Sci., 96, 485-494 (2014)
[48] McKechnie, J. I.; Brown, D.; Clarke, J. H.R., Methods of generating dense relaxed amorphous polymer samples for use in dynamic simulations, Macromolecules, 25, 1562-1567 (1992)
[49] Choy, C. L.; Wong, Y. W.; Yang, G. W.; Kanamoto, T., Elastic modulus and thermal conductivity of ultradrawn polyethylene, J. Polym. Sci., Part B, Polym. Phys., 37, 3359-3367 (1999)
[50] Henry, A.; Chen, G., High thermal conductivity of single polyethylene chains using molecular dynamics simulations, Phys. Rev. Lett., 101, 235502 (2008)
[51] Sheng Shen; Henry, A.; Tong, J.; Zheng, R.; Chen, G., Polyethylene nanofibres with very high thermal conductivities, Nat. Nanotechnol., 5, 251-255 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.