×

zbMATH — the first resource for mathematics

A stabilised nodal spectral element method for fully nonlinear water waves. (English) Zbl 1349.76570
Summary: We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by X. Cai et al. [ibid. 143, No. 2, 544–568, Art. No. CP985980 (1998; Zbl 0935.76042)], although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global \(L^2\) projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order - possibly adapted - spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.

MSC:
76M22 Spectral methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Beji, S.; Battjes, J. A., Numerical simulation of nonlinear-wave propagation over a bar, Coast. Eng., 23, 1-16, (1994)
[2] Bingham, H. B.; Zhang, H., On the accuracy of finite-difference solutions for nonlinear water waves, J. Eng. Math., 58, 211-228, (2007) · Zbl 1178.76256
[3] Bouffanais, E.; Deville, M. O., Mesh update techniques for free-surface flow solvers using spectral element method, J. Sci. Comput., 27, 1-3, 137-149, (June 2006)
[4] Brocchini, M., A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics, Proc. R. Soc. Lond. Ser. A, 469, 2160, 1-27, (2013) · Zbl 1371.35245
[5] Cai, X.; Langtangen, H. P.; Nielsen, B. F.; Tveito, A., A finite element method for fully nonlinear water waves, J. Comput. Phys., 143, 544-568, (July 1998)
[6] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral methods - fundamentals in single domains, (2006), Springer · Zbl 1093.76002
[7] Clauss, G.; Steinhagen, U., Numerical simulation of nonlinear transient waves and its validation by laboratory data, (International Offshore and Polar Engineering Conference, vol. III, ISOPE, Brest, France, (1999)), 368-375
[8] Cointe, R., Nonlinear simulation of transient free surface flows, (Proceedings of the 5th International Conference in Numerical Ship Hydrodynamics, (1989))
[9] Dean, R. G., Stream function representation of nonlinear Ocean waves, J. Geophys. Res., 70, 4561-4572, (1965)
[10] Deville, M. O.; Fischer, P. F.; Mund, E. H., High order methods for incompressible fluid flow, (2002), Cambridge University Press · Zbl 1007.76001
[11] Dias, F.; Bridges, T. J., The numerical computation of freely propagating time-dependent irrotational water waves, Fluid Dyn. Res., 38, 12, 803-830, (2006) · Zbl 1135.76008
[12] Ducrozet, G.; Ferrant, P., Rogue waves in large-scale fully-non-linear high-order-spectral simulations, (Proc. 22nd International Workshop on Water Waves and Floating Bodies, IWWWFB, Croatia, (2007))
[13] Engsig-Karup, A. P., Unstructured nodal DG-FEM solution of high-order Boussinesq-type equations, (2006), Department of Mechanical Engineering, Technical University of Denmark, PhD thesis · Zbl 1200.76121
[14] Engsig-Karup, A. P., Analysis of efficient preconditioned defect correction methods for nonlinear water waves, Int. J. Numer. Methods Fluids, 74, 10, 749-773, (2014)
[15] Engsig-Karup, A. P.; Bingham, H. B.; Lindberg, O., An efficient flexible-order model for 3D nonlinear water waves, J. Comput. Phys., 228, 2100-2118, (2009) · Zbl 1280.76024
[16] Engsig-Karup, A. P.; Glimberg, L. S.; Nielsen, A. S.; Lindberg, O., Fast hydrodynamics on heterogenous many-core hardware, (Couturier, Raphäel, Designing Scientific Applications on GPUs, Lecture Notes in Computational Science and Engineering, (2013), CRC Press / Taylor & Francis Group)
[17] Engsig-Karup, A. P.; Hesthaven, J. S.; Bingham, H. B.; Madsen, P., Nodal DG-FEM solutions of high-order Boussinesq-type equations, J. Eng. Math., 56, 351-370, (2006) · Zbl 1200.76121
[18] Engsig-Karup, A. P.; Hesthaven, J. S.; Bingham, H. B.; Warburton, T., DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations, Coast. Eng., 55, 197-208, (2008)
[19] Engsig-Karup, A. P.; Madsen, M. G.; Glimberg, S. L., A massively parallel GPU-accelerated model for analysis of fully nonlinear free surface waves, Int. J. Numer. Methods Fluids, 70, 1, (2011) · Zbl 1253.76009
[20] Eskilsson, C.; Engsig-Karup, A. P., On devising Boussinesq-type models with bounded eigenspectra: one horizontal dimension, Frontiers in Computational Physics Modeling the Earth System, J. Comput. Phys., 271, 261-280, (2014) · Zbl 1349.76200
[21] Eskilsson, C.; Engsig-Karup, A. P.; Sherwin, S. J.; Hesthaven, J. S.; Bergdahl, L., The next step in coastal numerical models: spectral/hp element methods?, (Proceedings of the WAVES2005 Conference, Madrid, (2005))
[22] Eskilsson, C.; Palm, J.; Kofoed, J. P.; Friis-Madsen, E., CFD study of the overtopping discharge of the wave dragon wave energy converter, (Proc. 1st International Conference of Renewable Energies Offshore, (2015), ASCE)
[23] Glimberg, S. L., Designing scientific software for heterogenous computing - with application to large-scale water wave simulations, (2013), Department of Applied Mathematics and Computer Science, Technical University of Denmark Kongens Lyngby, Denmark, PhD thesis
[24] Gobbi, M. F.; Kirby, J. T., Wave evolution over submerged sills: tests of a high-order Boussinesq model, Coast. Eng., 37, 57-96, (1999)
[25] Göddeke, D.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Wobker, H.; Becker, C.; Turek, S., Using GPUs to improve multigrid solver performance on a cluster, Int. J. Comput. Sci. Eng., 4, 1, 36-55, (2008)
[26] Greaves, D. M.; Wu, G. X.; Borthwick, A. G.L.; Taylor, R. Eatock, A moving boundary finite element method for fully nonlinear wave simulations, J. Ship Res., 41, 3, 181-194, (1997)
[27] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 135, 2, 280-292, (1997) · Zbl 0898.70002
[28] Harris, J. C.; Dombre, E.; Benoit, M.; Grilli, S. T., A comparison of methods in fully nonlinear boundary element numerical wave tank development, (14émes Journées de l’Hydrodynamique, (2014))
[29] Harris, J. C.; Dombre, E.; Benoit, M.; Grilli, S. T., Fast integral equation methods for fully nonlinear water wave modeling, (Proceedings of the Twenty-fourth (2014) International Ocean and Polar Engineering Conference, (2014))
[30] Hawken, D. M.; Townsend, P.; Webster, M. F., A comparison of gradient recovery methods in finite-element calculations, Commun. Appl. Numer. Methods, 7, 3, 195-204, (1991) · Zbl 0724.76048
[31] Hesthaven, J. S.; Gottlieb, S.; Gottlieb, D., Spectral methods for time-dependent problems, Cambridge Monographs on Applied and Computational Mathematics, vol. 21, (2007), Cambridge University Press Cambridge, UK · Zbl 1111.65093
[32] Hesthaven, J. S.; Kirby, R. M., Filtering in Legendre spectral methods, Math. Comput., 77, 263, 1425-1452, (2003) · Zbl 1195.65138
[33] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, (2008), Springer · Zbl 1134.65068
[34] Hinton, E.; Campbell, J. S., Local and global smoothing of discontinuous finite element functions using a least squares method, Int. J. Numer. Methods Eng., 8, 3, 461-480, (1974) · Zbl 0286.73066
[35] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp element methods for CFD, (1999), Oxford University Press · Zbl 0954.76001
[36] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp element methods for computational fluid dynamics, (2005), Oxford University Press · Zbl 1116.76002
[37] Kim, C. H.; Clément, A. H.; Tanizawa, K., Recent research and development of numerical wave tanks - a review, Int. J. Offshore Polar Eng., 9, 4, 241-256, (1999)
[38] Kirby, R. M.; Karniadakis, G. E., De-aliasing on non-uniform grids: algorithms and applications, J. Comput. Phys., 191, 249-264, (2003) · Zbl 1161.76534
[39] Kopriva, D., Implementing spectral methods for partial differential equations - algorithms for scientists and engineers, (2009), Springer · Zbl 1172.65001
[40] Kreiss, H.-O.; Oliger, J., Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24, 199-215, (1972)
[41] Larsen, J.; Dancy, H., Open boundaries in short wave simulations - a new approach, Coast. Eng., 7, 285-297, (1983)
[42] Li, B.; Fleming, C. A., A three dimensional multigrid model for fully nonlinear water waves, Coast. Eng., 30, 235-258, (1997)
[43] Longuet-Higgins, M. S.; Cokelet, E. D., The deformation of steep surface waves on water. I. A numerical method of computation, Proc. R. Soc. Lond. Ser. A, 350, 1660, 1-26, (1976) · Zbl 0346.76006
[44] Luth, H. R.; Klopman, B.; Kitou, N., Project 13G: kinematics of waves breaking partially on an offshore bar: LDV measurements for waves with and without a net onshore current, (1994), Delft Hydraulics, Technical report H1573
[45] Ma, Q. W.; Wu, G. X.; Taylor, R. Eatock, Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. part 1: methodology and numerical procedure, Int. J. Numer. Methods Fluids, 36, 3, 265-285, (2001) · Zbl 1017.76046
[46] Ma, Q. W.; Wu, G. X.; Taylor, R. Eatock, Finite element simulations of fully non-linear interaction between vertical cylinders and steep waves. part 2: numerical results and validation, Int. J. Numer. Methods Fluids, 36, 3, 287-308, (2001) · Zbl 1017.76046
[47] Ma, Q. W.; Yan, S., Quasi ALE finite element method for nonlinear water waves, J. Comput. Phys., 212, 1, 52-72, (2006) · Zbl 1216.76032
[48] Madsen, P. A.; Schäffer, H. A., A review of Boussinesq-type equations for gravity waves, (Advances in Coastal and Ocean Engineering, vol. 5, (1999)), 1-95
[49] Markall, G. R.; Slemmer, A.; Ham, D. A.; Kelly, P. H.J.; Cantwell, C. D.; Sherwin, S. J., Finite element assembly strategies on multi-core and many-core architectures, Int. J. Numer. Methods Fluids, 71, 1, 80-97, (2013)
[50] Markidis, S.; Gong, J.; Schliephake, M.; Laure, E.; Hart, A.; Henty, D.; Heisey, K.; Fischer, P., Openacc acceleration of the nek5000 spectral element code, Int. J. High Perform. Comput. Appl., 29, 3, 311-319, (2015)
[51] Mase, H.; Kirby, J. T., Hybrid frequency-domain KdV equation for random wave transformation, (Proc. 23rd International Conference on Coastal Engineering, (1992), ASCE), 474-487
[52] Mengaldo, G.; De Grazia, D.; Moxey, D.; Vincent, P. E.; Sherwin, S. J., Dealiasing techniques for high-order spectral element methods on regular and irregular grids, J. Comput. Phys., 299, 56-81, (2015) · Zbl 1352.65396
[53] Nimmala, S. B.; Yim, S. C.; Grilli, S. T., An efficient 3d-FNPF numerical wave tank for virtual large-scale wave basin experiments, (Proc. 31st Intl. Conf. on Ocean, Offshore and Arctic Engineering, (2012))
[54] Patera, A. T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54:468-488, (1984) · Zbl 0535.76035
[55] Paulsen, B. T.; Bredmose, H.; Bingham, H. B., An efficient domain decomposition strategy for wave loads on surface piercing circular cylinders, Coast. Eng., 86, 57-76, (2014)
[56] Robertson, I.; Sherwin, S. J., Free-surface flow simulation using hp/spectral elements, J. Comput. Phys., 155, 26-53, (1999) · Zbl 0953.76055
[57] Shao, Y.-L.; Faltinsen, O. M., A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics, J. Comput. Phys., 274, 312-332, (2014) · Zbl 1351.86006
[58] Shi, F.; Kirby, J. T.; Harris, J. C.; Geiman, J. D.; Grilli, S. T., A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation, Ocean Model., 43-44, 36-51, (2012)
[59] Spinneken, J.; Heller, V.; Kramer, S.; Pigott, M.; Viré, A., Assessment of an advanced finite element tool for the simulation of fully-nonlinear gravity water waves, (Proceedings of The Annual International Offshore and Polar Engineering Conference, ISOPE, 2012, (2012))
[60] Sriram, V.; Sannasiraj, S. A.; Sundar, V., Velocity calculation methods in finite element based MEL formulation, (Ma, Q. W., Advances in Numerical Simulation of Nonlinear Water Waves, Advances in Coastal and Ocean Engineering, vol. 11, (2010), World Scientific), 203-244 · Zbl 1235.76072
[61] Svendsen, I. A.; Jonsson, I. G., Hydrodynamics of coastal regions, (2001), Technical University of Denmark
[62] Tanizawa, K., The state of the art on numerical wave tank, (Proceedings of 4th Osaka Colloquium on Seakeeping Performance of Ships, (2000)), 95-114
[63] Turnbull, M. S.; Borthwick, A. G.L.; Taylor, R. Eatock, Numerical wave tank based on a σ-transformed finite element inviscid flow solver, Int. J. Numer. Methods Fluids, 42, 6, 641-663, (2003) · Zbl 1143.76490
[64] Wang, C.-Z.; Wu, G.-X., A brief summary of finite element method applications to nonlinear wave-structure interactions, J. Mar. Sci. Appl., 10, 127-138, (2011)
[65] Warburton, T., An explicit construction for interpolation nodes on the simplex, J. Eng. Math., 56, 3, 247-262, (2006) · Zbl 1110.65014
[66] Warburton, T.; Hagstrom, T., Taming the CFL number for discontinuous Galerkin methods on structured meshes, SIAM J. Numer. Anal., 46, 6, 3151-3180, (September 2008)
[67] Warburton, T. C.; Sherwin, S. J.; Karniadakis, G. E., Basis functions for triangular and quadrilateral high-order elements, SIAM J. Sci. Comput., 20, 5, 1671-1695, (April 1999)
[68] Wei, G.; Kirby, J. T., Time-dependent numerical code for extended Boussinesq equations, J. Waterw. Port Coast. Ocean Eng., 121, 5, 251-261, (1995)
[69] Westhuis, J.-H., The numerical simulation of nonlinear waves in a hydrodynamic model test basin, (2001), Department of Mathematics, University of Twente The Netherlands, PhD thesis
[70] Westhuis, J.-H.; Andonowati, A. J., Applying the finite element method in numerically solving the two dimensional free-surface water wave equations, (Proceedings of the 13th International Workshop on Water Waves and Floating Bodies, IWWWFB, (1998))
[71] Wu, G. X.; Taylor, R. Eatock, Finite element analysis of two-dimensional non-linear transient water waves, Appl. Ocean Res., 16, 6, 363-372, (1994)
[72] Wu, G. X.; Taylor, R. Eatock, Time stepping solutions of the two-dimensional nonlinear wave radiation problem, Ocean Eng., 22, 8, 785-798, (1995)
[73] Wu, G. X.; Taylor, R. Eatock, The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies, Ocean Eng., 30, 3, 387-400, (2003)
[74] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9:190-194, (1968)
[75] Zhou, B. Z.; Wu, G. X.; Teng, B., Fully nonlinear wave interaction with freely floating non-wall-sided structures, Eng. Anal. Bound. Elem., 50, 117-132, (2015) · Zbl 1403.74271
[76] Zienkiewicz, O. C.; Taylor, R. L.; Nithiarasu, P., Free surface and buoyancy driven flows, (Zienkiewicz, O. C.; Taylor, R. L.; Nithiarasu, P., The Finite Element Method for Fluid Dynamics, (2014), Butterworth-Heinemann Oxford), 195-224, (Chapter 6)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.