×

zbMATH — the first resource for mathematics

High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows. (English) Zbl 1349.76341
Summary: A high-order, central, essentially non-oscillatory (CENO), finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of the Navier-Stokes equations on body-fitted multi-block mesh. In contrast to other ENO schemes which require reconstruction on multiple stencils, the proposed CENO method uses a hybrid reconstruction approach based on a fixed central stencil. This feature is crucial to avoiding the complexities associated with multiple stencils of ENO schemes, providing high-order accuracy at relatively lower computational cost as well as being very well suited for extension to unstructured meshes. The spatial discretization of the inviscid (hyperbolic) fluxes combines an unlimited high-order \(k\)-exact least-squares reconstruction technique following from the optimal central stencil with a monotonicity-preserving, limited, linear, reconstruction algorithm. This hybrid reconstruction procedure retains the unlimited high-order \(k\)-exact reconstruction for cells in which the solution is fully resolved and reverts to the limited lower-order counterpart for cells with under-resolved/discontinuous solution content. Switching in the hybrid procedure is determined by a smoothness indicator. The high-order viscous (elliptic) fluxes are computed to the same order of accuracy as the hyperbolic fluxes based on a \(k\)-order accurate cell interface gradient derived from the unlimited, cell-centred, reconstruction. A somewhat novel \(h\)-refinement criterion based on the solution smoothness indicator is used to direct the steady and unsteady mesh adaptation. The proposed numerical procedure is thoroughly analyzed for advection-diffusion problems characterized by the full range of Péclet numbers, and its predictive capabilities are also demonstrated for several inviscid and laminar flows. The ability of the scheme to accurately represent solutions with smooth extrema and yet robustly handle under-resolved and/or non-smooth solution content (i. e., shocks and other discontinuities) is shown. Moreover, the ability to perform mesh refinement in regions of under-resolved and/or non-smooth solution content is also demonstrated.
Reviewer: Reviewer (Berlin)

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Moin, P.; Mahesh, K., Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech., 30, 539-578, (1998)
[2] Jameson, L., AMR vs. high order schemes, J. Sci. Comput., 18, 1-24, (2003) · Zbl 1112.76050
[3] Harten, A.; Enquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303, (1987) · Zbl 0652.65067
[4] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, J. Comput. Phys., 114, 45-58, (1994) · Zbl 0822.65062
[5] Sonar, T., On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection, Comput. Methods Appl. Mech. Eng., 140, 157, (1997) · Zbl 0898.76086
[6] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[7] Friedrich, O., Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, J. Comput. Phys., 144, 194-212, (1998) · Zbl 1392.76048
[8] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97-127, (1999) · Zbl 0926.65090
[9] Stanescu, D.; Habashi, W., Essentially nonoscillatory Euler solutions on unstructured meshes using extrapolation, AIAA J., 36, 1413-1416, (1998)
[10] Haselbacher, A., A WENO reconstruction algorithm for unstructured grids based on explicit stencil construction, (2005), AIAA, Paper 2005-0879
[11] Wolf, W. R.; Azevedo, J., High-order unstructured essentially nonoscillatory and weighted essentially nonoscillatory schemes for aerodynamic flows, AIAA J., 44, 10, 2295-2310, (2006)
[12] Barth, T. J., Recent developments in high order K-exact reconstruction on unstructured meshes, (1993), AIAA, Paper 93-0668
[13] Barth, T. J.; Fredrickson, P. O., Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction, (1990), AIAA, Paper 90-0013
[14] Ollivier-Gooch, C. F., High-order ENO schemes for unstructured meshes based on least-squares reconstruction, (1997), AIAA, Paper 97-0540 · Zbl 0899.76282
[15] Ollivier-Gooch, C. F., Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-squares reconstruction, J. Comput. Phys., 133, 6-17, (1997) · Zbl 0899.76282
[16] Nejat, A.; Ollivier-Gooch, C. F., A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows, J. Comput. Phys., 227, 2582-2609, (2008) · Zbl 1388.76183
[17] Michalak, K.; Ollivier-Gooch, C. F., Accuracy preserving limiter for the high-order accurate solution of the Euler equations, J. Comput. Phys., 228, 23, 8693-8711, (2009) · Zbl 1287.76171
[18] Capdeville, G., Towards a compact high-order method for non-linear hyperbolic systems. I: the Hermite least-square monotone (HLSM) reconstruction, J. Comput. Phys., 228, 3762-3788, (2009) · Zbl 1166.65375
[19] Colella, P.; Dorr, M. R.; Hittinger, J. A.F.; Martin, D. F., High-order, finite-volume methods in mapped coordinates, J. Comput. Phys., 230, 8, 2952-2976, (2011) · Zbl 1218.65119
[20] McCorquodale, P.; Colella, P., A high-order finite-volume method for conservation laws on locally refined grids, Commun. Appl. Math. Comput. Sci., 6, 1, 1-25, (2011) · Zbl 1252.65163
[21] Colella, P.; Sekora, M. D., A limiter for PPM that preserves accuracy at smooth extrema, J. Comput. Phys., 227, 7069-7076, (2008) · Zbl 1152.65090
[22] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite-element method for conservation laws II: general framework, Math. Comput., 52, 411, (1989) · Zbl 0662.65083
[23] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite-element method for conservation laws III: one-dimensional systems, J. Comput. Phys., 84, 90, (1989) · Zbl 0677.65093
[24] Cockburn, B.; Hou, S.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite-element method for conservation laws IV: the multidimensional case, J. Comput. Phys., 54, 545, (1990) · Zbl 0695.65066
[25] Qui, J.; Shu, C.-W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26, 3, 907-929, (2005) · Zbl 1077.65109
[26] Barter, G. E.; Darmofal, D. L., Shock capturing with higher-order, PDE-based artificial viscosity, (2007), AIAA, Paper 2007-3823
[27] Barter, G. E.; Darmofal, D. L., Shock capturing with PDE-based artificial viscosity for DGFEM: part I. formulation, J. Comput. Phys., 229, 5, 1810-1827, (2010) · Zbl 1329.76153
[28] Xu, Z.; Liu, Y.; Shu, C.-W., Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells, J. Comput. Phys., 228, 2194-2212, (2009) · Zbl 1165.65392
[29] Kubatko, E. J.; Dawson, C.; Westerink, J. J., Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids, J. Comput. Phys., 227, 9697-9710, (2008) · Zbl 1154.65071
[30] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[31] Wang, Z. J., Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation, J. Comput. Phys., 178, 210-251, (2002) · Zbl 0997.65115
[32] Wang, Z. J.; Zhang, L.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems, J. Comput. Phys., 194, 2, 716-741, (2004) · Zbl 1039.65072
[33] Wang, Z. J.; Liu, Y.; May, G.; Jameson, A., Spectral difference method for unstructured grids II: extension to the Euler equations, J. Sci. Comput., 32, 1, 45-71, (2007) · Zbl 1151.76543
[34] Liu, Y.; Vinokur, M.; Wang, Z., Discontinuous spectral difference method for conservation laws on unstructured grids, (Proceedings of the 3rd International Conference on Computational Fluid Dynamics, Toronto, Canada, (July 2004)), 12-16
[35] Huynh, H., A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, (2007), AIAA, Paper 2007-4079
[36] Yang, M.; Wang, Z. J., A parameter-free generalized moment limiter for high-order methods on unstructured grids, (2009), AIAA, Tech. Rep. 2009-605
[37] Yang, M.; Wang, Z. J., A parameter-free generalized moment limiter for high-order methods on unstructured grids, Adv. Appl. Math. Mech., 1, 4, 451-480, (2009)
[38] Wang, Z. J.; Gao, H., A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids, J. Comput. Phys., 228, 21, 8161-8186, (2009) · Zbl 1173.65343
[39] Abgrall, R.; Roe, P. L., High order fluctuation schemes on triangular mesh, J. Comput. Phys., 19, 1-3, 3-36, (2003) · Zbl 1068.65133
[40] Abgrall, R., Essentially non-oscillatory residual distribution schemes for hyperbolic problems, J. Comput. Phys., 214, 773-808, (2006) · Zbl 1089.65083
[41] Guzik, S.; Groth, C. P.T., Comparison of solution accuracy of multidimensional residual distribution and Godunov-type finite-volume methods, Int. J. Comput. Fluid Dyn., 22, 1, 61-68, (2008) · Zbl 1388.76176
[42] Abgrall, R.; Larat, A.; Ricchiuto, M., Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes, J. Comput. Phys., 230, 11, 4103-4136, (2011) · Zbl 1343.76017
[43] Dias, S. C.; Zingg, D. W., A high-order parallel Newton-Krylov flow solver for the Euler equations, (2009), AIAA, Paper 2009-3657
[44] Coirier, W. J., An adaptively-refined, Cartesian, cell-based scheme for the Euler and Navier-Stokes equations, (1994), University of Michigan, Ph.D. thesis
[45] Delanaye, M.; Aftomis, M. J.; Berger, M. J.; Liu, Y.; Pulliam, T. H., Automatic hybrid-Cartesian grid generation for high-Reynolds number flows around complex geometries, (1999), AIAA, Paper 99-0777
[46] Barad, M.; Colella, P., A fourth-order accurate local refinement method for poissonʼs equation, J. Comput. Phys., 209, 1-18, (2005) · Zbl 1073.65126
[47] Ollivier-Gooch, C. F.; Van Altena, M., A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, J. Comput. Phys., 181, 2, 729-752, (2002) · Zbl 1178.76251
[48] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279, (1997) · Zbl 0871.76040
[49] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection diffusion system, SIAM J. Numer. Anal., 35, 6, 2440-2463, (1998) · Zbl 0927.65118
[50] van Leer, B.; Lo, M.; van Raalte, M., A discontinuous Galerkin method for diffusion based on recovery, (2007), AIAA, Paper 2007-4083
[51] van Raalte, M.; van Leer, B., Bilinear forms for the recovery-based discontinuous Galerkin method for diffusion, Commun. Comput. Phys., 5, 2-4, 683-693, (2009) · Zbl 1364.65261
[52] Gassner, G.; Lörcher, F.; Munz, C.-D., A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes, J. Comput. Phys., 224, 1049-1063, (2007) · Zbl 1123.76040
[53] Lörcher, F.; Gassner, G.; Munz, C.-D., An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, J. Comput. Phys., 227, 5649-5670, (2008) · Zbl 1147.65077
[54] Liu, H.; Yan, J., The direct discontinuous Galerkin (DDG) methods for diffusion problems, SIAM J. Numer. Anal., 41, 1, 675-698, (2009) · Zbl 1189.65227
[55] Oliver, T. A.; Darmofal, D. L., An unsteady adaptation algorithm for discontinuous Galerkin discretizations of the RANS equations, (2007), AIAA, Paper 2007-3940
[56] Sun, Y.; Wang, Z. J.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids VI: extension to viscous flow, J. Comput. Phys., 215, 1, 41-58, (2006) · Zbl 1140.76381
[57] May, G.; Jameson, A., High-order accurate methods for high-speed flow, (2005), AIAA, Paper 2005-5251
[58] May, G.; Jameson, A., A spectral difference method for the Euler and Navier-Stokes equations on unstructured meshes, (2006), AIAA, Paper 2006-304
[59] Kannan, R.; Wang, Z. J., A study of viscous flux formulations for a p-multigrid spectral volume Navier-Stokes solver, J. Sci. Comput., 41, 2, 165-199, (2009) · Zbl 1203.65160
[60] Kannan, R.; Wang, Z. J., The direct discontinuous Galerkin (DDG) viscous flux scheme for the high order spectral volume method, 39, 10, 2007-2021, (2010) · Zbl 1245.76090
[61] Kannan, R.; Wang, Z. J., A variant of the LDG flux formulation for the spectral volume method, J. Sci. Comput., 46, 2, 314-328, (2011) · Zbl 1259.76037
[62] Kannan, R.; Wang, Z. J., A high order spectral volume solution to the burgersʼ equation using the Hopf-Cole transformation, Int. J. Numer. Methods Fluids, 69, 4, 781-801, (2012) · Zbl 1253.76087
[63] Haga, T.; Gao, H.; Wang, Z. J., A high-order unifying discontinuous formulation for the Navier-Stokes equations on 3D mixed grids, Math. Model. Nat. Phenom., 6, 3, 28-56, (2011) · Zbl 1239.76044
[64] De Rango, S.; Zingg, D., Higher-order spatial discretization for turbulent aerodynamic computations, AIAA J., 39, 1296-1304, (2001)
[65] Ivan, L.; Groth, C. P.T., High-order central ENO finite-volume scheme with adaptive mesh refinement, (2007), AIAA, Paper 2007-4323
[66] Ivan, L., Development of high-order CENO finite-volume schemes with block-based adaptive mesh refinement, (2011), University of Toronto, Ph.D. thesis
[67] Sachdev, J. S.; Groth, C. P.T.; Gottlieb, J. J., A parallel solution-adaptive scheme for predicting multi-phase core flows in solid propellant rocket motors, Int. J. Comput. Fluid Dyn., 19, 2, 159-177, (2005) · Zbl 1286.76100
[68] Gao, X.; Groth, C. P.T., A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows, Int. J. Comput. Fluid Dyn., 20, 5, 349-357, (2006) · Zbl 1370.76127
[69] Gao, X.; Northrup, S.; Groth, C. P.T., Parallel solution-adaptive method for two-dimensional non-premixed combusting flows, Prog. Comput. Fluid Dyn., 11, 2, 76-95, (2011) · Zbl 1278.76067
[70] Shi, J.; Hu, C.; Shu, C., A technique of treating negative weights in WENO schemes, J. Comput. Phys., 175, 108-127, (2002) · Zbl 0992.65094
[71] Harten, A.; Enquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes, III, (1986), ICASE, Report 86-22
[72] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723, (2007) · Zbl 1110.65077
[73] Capdeville, G., A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes, J. Comput. Phys., 227, 2977-3014, (2008) · Zbl 1135.65359
[74] Petrovsky, I. G., Lectures on partial differential equations, (1954), Interscience New York · Zbl 0059.08402
[75] Bers, L.; John, F.; Schechter, M., Partial differential equations, (1966), Interscience New York
[76] McDonald, J.; Groth, C. P.T., Numerical modeling of micron-scale flows using the Gaussian moment closure, (2005), AIAA, Paper 2005-5035
[77] Northrup, S. A.; Groth, C. P.T., Solution of laminar diffusion flames using a parallel adaptive mesh refinement algorithm, (2005), AIAA, Paper 2005-0547
[78] Godunov, S. K., Finite-difference method for numerical computations of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 271-306, (1959) · Zbl 0171.46204
[79] Gottlieb, J. J.; Groth, C. P.T., Assessment of Riemann solvers for unsteady one-dimensional inviscid flows of perfect gases, J. Comput. Phys., 78, 437-458, (1988) · Zbl 0657.76064
[80] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer-Verlag New York · Zbl 0923.76004
[81] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes. the art of scientific computing, (2007), Cambridge University Press New York · Zbl 1132.65001
[82] Harten, A.; Chakravarthy, S. R., Multi-dimensional ENO schemes for general geometries, (1991), ICASE, Report 91-76
[83] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393, (1983) · Zbl 0565.65050
[84] Zhang, X.; Shu, C.-W., On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys., 229, 3091-3120, (2010) · Zbl 1187.65096
[85] Zhang, X.; Shu, C.-W., On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 8918-8934, (2010) · Zbl 1282.76128
[86] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 22, 7504-7517, (2012)
[87] Mavriplis, D. J., Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes, (2003), AIAA, Paper 2003-3986
[88] Lawson, C.; Hanson, R., Solving least squares problems, (1974), Prentice Hall, Inc · Zbl 0860.65028
[89] Penrose, R., A generalized inverse for matrices, Proc. Camb. Philos. Soc., 51, 406-413, (1955) · Zbl 0065.24603
[90] Jalali, A.; Ollivier-Gooch, C., Higher-order finite volume solution reconstruction on highly anisotropic meshes, (2013), AIAA, Paper 2013-2565
[91] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to godunovʼs method, J. Comput. Phys., 32, 101-136, (1979) · Zbl 1364.65223
[92] Venkatakrishnan, V., On the accuracy of limiters and convergence to steady state solutions, (1993), AIAA, Paper 93-0880
[93] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372, (1981) · Zbl 0474.65066
[94] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294-318, (1988) · Zbl 0642.76088
[95] Linde, T. J., A three-dimensional adaptive multifluid MHD model of the heliosphere, (1998), University of Michigan, Ph.D. thesis
[96] Linde, T., A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws, Int. J. Numer. Methods Fluids, 40, 391-402, (2002) · Zbl 1020.76036
[97] Mavriplis, D. J., Unstructured mesh discretizations and solvers for computational aerodynamics, (2007), AIAA, Paper 2007-3955
[98] Lomax, H.; Pulliam, T.; Zingg, D., Fundamentals of computational fluid dynamics, (2001), Springer-Verlag New York · Zbl 0970.76002
[99] Balsara, D. S.; Meyer, C.; Dumbser, M.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes — speed comparisons with Runge-Kutta methods, J. Comput. Phys., 235, 934-969, (2013) · Zbl 1291.76237
[100] Bijl, H.; Carpenter, M. H.; Vatsa, V. N.; Kennedy, C. A., Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: laminar flow, J. Comput. Phys., 179, 313-329, (2002) · Zbl 1060.76079
[101] van Leer, B.; Tai, C. H.; Powell, K. G., Design of optimally-smoothing multi-stage schemes for the Euler equations, (1989), AIAA, Paper 89-1933-CP
[102] van Leer, B.; Lee, W.-T.; Roe, P. L.; Powell, K. G.; Tai, C.-H., Design of optimally smoothing multistage schemes for the Euler equations, Commun. Appl. Numer. Methods, 8, 10, 761-769, (1992) · Zbl 0758.76043
[103] Hirsch, C., Numerical computation of internal and external flows, vol. 1, fundamentals of numerical discretization, (1989), John Wiley & Sons Toronto
[104] Hirsch, C., Numerical computation of internal and external flows, vol. 2, computational methods for inviscid and viscous flows, (1990), John Wiley & Sons Toronto · Zbl 0742.76001
[105] Gao, X.; Groth, C. P.T., A parallel solution-adaptive method for three-dimensional turbulent non-premixed combusting flows, J. Comput. Phys., 229, 3250-3275, (2010) · Zbl 1307.76055
[106] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512, (1984) · Zbl 0536.65071
[107] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 67-84, (1989) · Zbl 0665.76070
[108] De Zeeuw, D.; Powell, K. G., An adaptively refined Cartesian mesh solver for the Euler equations, J. Comput. Phys., 104, 56-68, (1993) · Zbl 0766.76066
[109] Coirier, W. J.; Powell, K. G., An accuracy assessment of Cartesian-mesh approaches for the Euler equations, J. Comput. Phys., 117, 121-131, (1995) · Zbl 0817.76055
[110] Aftomis, M. J.; Berger, M. J.; Melton, J. E., Robust and efficient Cartesian mesh generation for component-base geometry, AIAA J., 36, 6, 952-960, (1998)
[111] Aftomis, M. J.; Berger, M. J.; Adomavicius, G., A parallel multilevel method for adaptively refined Cartesian grids with embedded boundaries, (2000), AIAA, Paper 2000-0808
[112] Test cases for inviscid flow field methods, (1986), AGARD Advisory Report 211
[113] Balsara, D. S.; Shu, C.-H., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 2, 405-452, (2000) · Zbl 0961.65078
[114] Mavriplis, D. J.; Jameson, A.; Martinelli, L., Multigrid solution of the Navier-Stokes equations on triangular meshes, (1989), AIAA, Paper 89-0120
[115] Sun, Y.; Wang, Z. J.; Liu, Y., Efficient implicit non-linear LU-SGS approach for compressible flow computation using high-order spectral difference method, Commun. Comput. Phys., 5, 2-4, 760-778, (2009) · Zbl 1364.76139
[116] Williamson, C., Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 28, 477-539, (1996)
[117] Henderson, R. D., Details of the drag curve near the onset of vortex shedding, Phys. Fluids, 7, 9, 2102-2104, (1995)
[118] Schlichting, H.; Gersten, K., Boundary-layer theory, (2000), Springer New York
[119] Wieselsberger, C., New data on the laws of fluid resistance, (1922), NACA, Technical Note 84
[120] Roshko, A., On the development of turbulent wakes from vortex streets, (1954), NACA, Technical Note 1191
[121] Sheard, G. J.; Hourigan, K.; Thompson, M. C., Computational of the drag coefficients for low-Reynolds-number flow past rings, J. Fluid Mech., 526, 257-275, (2005) · Zbl 1065.76059
[122] Ivan, L.; Groth, C. P.T., High-order central ENO scheme with adaptive mesh refinement for hyperbolic conservation laws, Commun. Comput. Phys., (2013), submitted for publication
[123] Barth, T.; Jespersen, D. C., The design and application of upwind schemes on unstructured meshes, (1989), AIAA Paper, 86-0366
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.