×

zbMATH — the first resource for mathematics

ADER-WENO finite volume schemes with space-time adaptive mesh refinement. (English) Zbl 1349.76325
Summary: We present the first high order one-step ADER-WENO finite volume scheme with adaptive mesh refinement (AMR) in multiple space dimensions. High order spatial accuracy is obtained through a WENO reconstruction, while a high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method. Due to the one-step nature of the underlying scheme, the resulting algorithm is particularly well suited for an AMR strategy on space-time adaptive meshes, i. e. with time-accurate local time stepping. The AMR property has been implemented ‘cell-by-cell’, with a standard tree-type algorithm, while the scheme has been parallelized via the message passing interface (MPI) paradigm. The new scheme has been tested over a wide range of examples for nonlinear systems of hyperbolic conservation laws, including the classical Euler equations of compressible gas dynamics and the equations of magnetohydrodynamics (MHD). High order in space and time have been confirmed via a numerical convergence study and a detailed analysis of the computational speed-up with respect to highly refined uniform meshes is also presented. We also show test problems where the presented high order AMR scheme behaves clearly better than traditional second order AMR methods. The proposed scheme that combines for the first time high order ADER methods with space-time adaptive grids in two and three space dimensions is likely to become a useful tool in several fields of computational physics, applied mathematics and mechanics.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
35Q31 Euler equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, Journal of Computational Physics, 144, 45-58, (1994) · Zbl 0822.65062
[2] Baeza, A.; Mulet, P., Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations, International Journal for Numerical Methods in Fluids, 52, 455-471, (2006) · Zbl 1370.76116
[3] Balsara, D. S.; Rumpf, T.; Dumbser, M.; Munz, C.-D., Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, Journal of Computational Physics, 228, 2480-2516, (2009) · Zbl 1275.76169
[4] Balsara, D. S., Divergence-free adaptive mesh refinement for magnetohydrodynamics, Journal of Computational Physics, 174, 614-648, (2001) · Zbl 1157.76369
[5] Balsara, D. S.; Meyer, C.; Dumbser, M.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - speed comparisons with Runge-Kutta methods, Journal of Computational Physics, 235, 934-969, (2013) · Zbl 1291.76237
[6] Balsara, D. S.; Shu, C. W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, Journal of Computational Physics, 160, 405-452, (2000) · Zbl 0961.65078
[7] Balsara, D. S.; Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, Journal of Computational Physics, 149, 270-292, (1999) · Zbl 0936.76051
[8] Bell, J.; Berger, M.; Saltzman, J.; Welcome, M., Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM Journal of Scientific Computing, 15, 1, 127-138, (1994) · Zbl 0793.65072
[9] Ben-Artzi, M.; Falcovitz, J., A second-order Godunov-type scheme for compressible fluid dynamics, Journal of Computational Physics, 55, 1-32, (1984) · Zbl 0535.76070
[10] Ben-Artzi, M.; Li, J.; Warnecke, G., A direct Eulerian GRP scheme for compressible fluid flows, Journal of Computational Physics, 218, 19-43, (2006) · Zbl 1158.76375
[11] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics, 82, 64-84, (1989) · Zbl 0665.76070
[12] Berger, M. J.; Jameson, A., Automatic adaptive grid refinement for the Euler equations, AIAA Journal, 23, 561-568, (1985)
[13] Berger, M. J.; LeVeque, R., Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM Journal on Numerical Analysis, 35, 2298-2316, (1998) · Zbl 0921.65070
[14] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, 53, 484, (1984) · Zbl 0536.65071
[15] Berger, M. J.; George, D. L.; LeVeque, R. J.; Mandli, K. T., The geoclaw software for depth-averaged flows with adaptive refinement, Advances in Water Resources, 34, 1195-1206, (2011)
[16] Bourgeade, A.; LeFloch, P.; Raviart, P. A., An asymptotic expansion for the solution of the generalized Riemann problem. part II: application to the gas dynamics equations, Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 6, 437-480, (1989) · Zbl 0703.35106
[17] Bürger, R.; P. Mulet; Villada, L. M., Spectral WENO schemes with adaptive mesh refinement for models of polydisperse sedimentation, ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für angewandte Mathematik und Mechanik, (2012) · Zbl 1277.76115
[18] Carroll-Nellenback, J. J.; Shroyer, B.; Frank, A.; Ding, C., Efficient parallelization for AMR MHD multiphysics calculations; implementation in AstroBEAR. Journal of Computational Physics, 236, 461-476, (2013)
[19] Castro, C. C.; Toro, E. F., Solvers for the high-order Riemann problem for hyperbolic balance laws, Journal of Computational Physics, 227, 2481-2513, (2008) · Zbl 1148.65066
[20] Castro, C. E.; Käser, M.; Toro, E. F., Space-time adaptive numerical methods for geophysical applications, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 4613-4631, (2009) · Zbl 1192.86006
[21] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws - multi-dimensional optimal order detection (MOOD), Journal of Computational Physics, 230, 4028-4050, (2011) · Zbl 1218.65091
[22] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics, 141, 199-224, (1998) · Zbl 0920.65059
[23] Colella, P.; Dorr, M.; Hittinger, J.; Martin, D. F.; McCorquodale, P., High-order finite-volume adaptive methods on locally rectangular grids, Journal of Physics Conference Series, 180, 1, 012010, (2009)
[24] Cunningham, A. J.; Frank, A.; Varnière, P.; Mitran, S.; Jones, T. W., Simulating magnetohydrodynamical flow with constrained transport and adaptive mesh refinement: algorithms and tests of the astrobear code, The Astrophysical Journal Supplement Series, 182, 2, 519, (2009)
[25] K.S. Dahl, Aeroacoustic computation of low mach number flow, Technical Report, Riso National Laboratory, Roskilde, Denmark, December 1996.
[26] Dahlburg, R. B.; Picone, J. M., Evolution of the orszag-Tang vortex system in a compressible medium. I. initial average subsonic flow, Physics of Fluids B, 1, 2153-2171, (1989)
[27] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, Journal of Computational Physics, 175, 645-673, (2002) · Zbl 1059.76040
[28] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, Journal of Computational Physics, 227, 8209-8253, (2008) · Zbl 1147.65075
[29] Dumbser, M.; Castro, M.; Parés, C.; Toro, E. F., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows, Computers and Fluids, 38, 1731-1748, (2009) · Zbl 1177.76222
[30] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, Journal of Computational Physics, 227, 3971-4001, (2008) · Zbl 1142.65070
[31] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, Journal of Computational Physics, 221, 693-723, (2007) · Zbl 1110.65077
[32] Dumbser, M.; Käser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, Journal of Computational Physics, 226, 204-243, (2007) · Zbl 1124.65074
[33] Dumbser, M.; Käser, M.; Toro, E. F., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: local time stepping and p-adaptivity, Geophysical Journal International, 171, 695-717, (2007)
[34] Dumbser, M.; Munz, C. D., ADER discontinuous Galerkin schemes for aeroacoustics, Comptes Rendus Mécanique, 333, 683-687, (2005) · Zbl 1107.76044
[35] Dumbser, M.; Munz, C. D., Building blocks for arbitrary high order discontinuous Galerkin schemes, Journal of Scientific Computing, 27, 215-230, (2006) · Zbl 1115.65100
[36] Dumbser, M.; Toro, E. F., On universal osher-type schemes for general nonlinear hyperbolic conservation laws, Communications in Computational Physics, 10, 635-671, (2011) · Zbl 1373.76125
[37] Dumbser, M.; Zanotti, O., Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations, Journal of Computational Physics, 228, 6991-7006, (2009) · Zbl 1261.76028
[38] Le Floch, P.; Raviart, P. A., An asymptotic expansion for the solution of the generalized Riemann problem. part I: general theory, Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 5, 179-207, (1988) · Zbl 0679.35064
[39] Le Floch, P.; Tatsien, L., A global asymptotic expansion for the solution of the generalized Riemann problem, Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 3, 321-340, (1991) · Zbl 0731.35006
[40] Friedrich, O., Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, Journal of Computational Physics, 144, 194-212, (1998) · Zbl 1392.76048
[41] Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F. X.; Zingale, M.; Lamb, D. Q.; MacNeice, P.; Rosner, R.; Truran, J. W.; Tufo, H., FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, The Astrophysical Journal Supplement Series, 131, 273-334, (2000)
[42] Gassner, G.; Dumbser, M.; Hindenlang, F.; Munz, C. D., Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, Journal of Computational Physics, 230, 4232-4247, (2011) · Zbl 1220.65122
[43] Gassner, G.; Lörcher, F.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion II. viscous flow equations in multi dimensions, Journal of Scientific Computing, 34, 260-286, (2008) · Zbl 1218.76027
[44] Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Matematicheskiı̆ Sbornik, 47, 271-306, (1959) · Zbl 0171.46204
[45] Gottlieb, S.; Shu, C. W., Total variation diminishing Runge-Kutta schemes, Mathematics of Computation, 67, 73-85, (1998) · Zbl 0897.65058
[46] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, Journal of Computational Physics, 71, 231-303, (1987) · Zbl 0652.65067
[47] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, Journal of Scientific Computing, 48, 173-189, (2011) · Zbl 1221.65231
[48] Hu, C.; Shu, C. W., Weighted essentially non-oscillatory schemes on triangular meshes, Journal of Computational Physics, 150, 97-127, (1999) · Zbl 0926.65090
[49] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 202-228, (1996) · Zbl 0877.65065
[50] Jiang, G. S.; Wu, C. C., A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, Journal of Computational Physics, 150, 561-594, (1999) · Zbl 0937.76051
[51] Käser, M.; Iske, A., ADER schemes on adaptive triangular meshes for scalar conservation laws, Journal of Computational Physics, 205, 486-508, (2005) · Zbl 1072.65116
[52] Keppens, R.; Nool, M.; Tóth, G.; Goedbloed, J. P., Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation, Computer Physics Communications, 153, 317-339, (2003) · Zbl 1196.76055
[53] Khokhlov, A. M., Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations, Journal of Computational Physics, 143, 2, 519-543, (1998) · Zbl 0934.76057
[54] Kurganov, A.; Petrova, G., Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws, Numerical Methods for Partial Differential Equations, 21, 3, 536-552, (2005) · Zbl 1071.65122
[55] Kurganov, A.; Tadmor, E., Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numerical Methods Partial Differential Equations, 18, 584-608, (2002) · Zbl 1058.76046
[56] Lax, P. D.; Wendroff, B., Systems of conservation laws, Communications in Pure and Applied Mathematics, 13, 217-237, (1960) · Zbl 0152.44802
[57] Lee, D. J.; Koo, S. O., Numerical study of sound generation due to a spinning vortex pair, AIAA Journal, 33, 1, 20-26, (1995) · Zbl 0824.76078
[58] Lele, S. K., Compact finite difference schemes with spectral like resolution, Journal of Computational Physics, 103, 16-42, (1992) · Zbl 0759.65006
[59] Liu, W.; Cheng, J.; Shu, C. W., High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations, Journal of Computational Physics, 228, 8872-8891, (2009) · Zbl 1287.76181
[60] Löhner, R., An adaptive finite element scheme for transient problems in CFD, Computer Methods in Applied Mechanics and Engineering, 61, 323-338, (1987) · Zbl 0611.73079
[61] Lörcher, F.; Gassner, G.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion. I. inviscid compressible flow in one space dimension, Journal of Scientific Computing, 32, 175-199, (2007) · Zbl 1143.76047
[62] Melander, M. V.; Zabusky, N. J.; McWilliams, J. C., Symmetric vortex merger in two dimensions: causes and conditions, Journal of Fluid Mechanics, 195, 303-340, (1988) · Zbl 0653.76020
[63] Mignone, A.; Zanni, C.; Tzeferacos, P.; van Straalen, B.; Colella, P.; Bodo, G., The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics, Astrophysical Journal Supplement, 198, 7, (2012)
[64] Mitchell, B. E.; Lele, S. K.; Moin, P., Direct computation of the sound from a compressible co-rotating vortex pair, Journal of Fluid Mechanics, 285, 181-202, (1995) · Zbl 0848.76085
[65] Montecinos, G.; Castro, C. E.; Dumbser, M.; Toro, E. F., Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms, Journal of Computational Physics, 231, 6472-6494, (2012) · Zbl 1284.35268
[66] Olivieri, D. A.; Fairweather, M.; Falle, S. A.E. G., An adaptive mesh refinement method for solution of the transported PDF equation, International Journal for Numerical Methods in Engineering, 79, 1536-1556, (2009) · Zbl 1176.80089
[67] Olivieri, D. A.; Fairweather, M.; Falle, S. A.E. G., Rans modelling of intermittent turbulent flows using adaptive mesh refinement methods, Journal of Turbulence, 11, 1-18, (2010) · Zbl 1273.76170
[68] Orszag, S. A.; Tang, C. M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, Journal of Fluid Mechanics, 90, 129, (1979)
[69] Picone, J. M.; Dahlburg, R. B., Evolution of the orszag-Tang vortex system in a compressible medium. II. supersonic flow, Physics of Fluids B, 3, 29-44, (1991)
[70] Pringuey, T.; Cant, R. S., High order schemes on three-dimensional general polyhedral meshes - application to the level set method, Communications in Computational Physics, 12, 1-41, (2012) · Zbl 1373.76139
[71] Qiu, J.; Dumbser, M.; Shu, C. W., The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Computer Methods in Applied Mechanics and Engineering, 194, 4528-4543, (2005) · Zbl 1093.76038
[72] Qiu, J.; Shu, C. W., Finite difference WENO schemes with Lax-Wendroff type time discretization, SIAM Journal on Scientific Computing, 24, 6, 2185-2198, (2003) · Zbl 1034.65073
[73] Quirk, J. J.; hydrodynamics, A parallel adaptive grid algorithm for computational shock, Applied Numerical Mathematics, 20, 427-453, (1996)
[74] Roller, S.; Schwartzkopff, T.; Fortenbach, R.; Dumbser, M.; Munz, C. D., Calculation of low Mach number acoustics: a comparison of MPV, EIF and linearized Euler equations, Mathematical Modelling and Numerical Analysis (M2AN), 39, 561-576, (2005) · Zbl 1130.76072
[75] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, Journal of Computational Mathematics and Mathematical Physics USSR, 1, 267-279, (1961)
[76] T. Schwartzkopff, Finite-Volumen Verfahren hoher Ordnung und heterogene Gebietszerlegung für die numerische Aeroakustik, Ph.D. Thesis, Universität Stuttgart, Institut für Aerodynamik und Gasdynamik, 2005.
[77] Schwartzkopff, T.; Dumbser, M.; Munz, C. D., Fast high order ADER schemes for linear hyperbolic equations, Journal of Computational Physics, 197, 532-539, (2004) · Zbl 1052.65078
[78] Schwartzkopff, T.; Munz, C. D.; Toro, E. F., ADER: a high order approach for linear hyperbolic systems in 2d, Journal of Scientific Computing, 17, 1-4, 231-240, (2002) · Zbl 1022.76034
[79] Sebastian, K.; Shu, C. W., Multidomain WENO finite difference method with interpolation at subdomain interfaces, Journal of Scientific Computing, 19, 405-438, (2003) · Zbl 1081.76577
[80] Shen, C.; Qiu, J. M.; Christlieb, A., Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations, Journal of Computational Physics, 230, 3780-3802, (2011) · Zbl 1218.65085
[81] Shi, J.; Hu, C.; Shu, C. W., A technique of treating negative weights in WENO schemes, Journal of Computational Physics, 175, 108-127, (2002) · Zbl 0992.65094
[82] Shi, J.; Zhang, Y. T.; Shu, C. W., Resolution of high order WENO schemes for complicated flow structures, Journal of Computational Physics, 186, 690-696, (2003) · Zbl 1047.76081
[83] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics, 77, 439-471, (1988) · Zbl 0653.65072
[84] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, Journal of Computational Physics, 83, 32-78, (1989) · Zbl 0674.65061
[85] Sonar, T., On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection, Computer Methods in Applied Mechanics and Engineering, 140, 157-181, (1997) · Zbl 0898.76086
[86] Tam, C. K.W., Dispersion-relation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics, 107, 262-281, (1993) · Zbl 0790.76057
[87] C.K.W. Tam, Numerical methods in computational aeroacoustics, in: Applied Aero-Acoutistics: Prediction, Methods, Lecture Series 1996-04, Von Karman Institute for Fluid Dynamics, 1996.
[88] Taube, A.; Dumbser, M.; Balsara, D. S.; Munz, C. D., Arbitrary high order discontinuous Galerkin schemes for the magnetohydrodynamic equations, Journal of Scientific Computing, 30, 441-464, (2007) · Zbl 1176.76075
[89] Taube, A.; Dumbser, M.; Munz, C. D.; Schneider, R., A high order discontinuous Galerkin method with local time stepping for the Maxwell equations, International Journal of Numerical Modelling: Electronic Networks, Devices And Fields, 22, 77-103, (2009) · Zbl 1156.78012
[90] Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astronomy & Astrophysics, 385, 337-364, (2002)
[91] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, Journal of Scientific Computing, 17, 609-618, (2002) · Zbl 1024.76028
[92] Titarev, V. A.; Toro, E. F., Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics, 201, 238-260, (2004) · Zbl 1059.65078
[93] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, Journal of Computational Physics, 204, 715-736, (2005) · Zbl 1060.65641
[94] Titarev, V. A.; Tsoutsanis, P.; Drikakis, D., WENO schemes for mixed-element unstructured meshes, Communications in Computational Physics, 8, 585-609, (2010) · Zbl 1364.76121
[95] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (2009), Springer · Zbl 1227.76006
[96] Toro, E. F.; Titarev, V. A., Solution of the generalized Riemann problem for advection-reaction equations, Proceedings of the Royal Society of London, 271-281, (2002) · Zbl 1019.35061
[97] Toro, E. F.; Titarev, V. A., ADER schemes for scalar hyperbolic conservation laws with source terms in three space dimensions, Journal of Computational Physics, 202, 196-215, (2005) · Zbl 1061.65103
[98] Tsoutsanis, P.; Titarev, V. A.; Drikakis, D., WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions, Journal of Computational Physics, 230, 1585-1601, (2011) · Zbl 1210.65160
[99] Utzmann, J.; Schwartzkopff, T.; Dumbser, M.; Munz, C. D., Heterogeneous domain decomposition for computational aeroacoustics, AIAA Journal, 44, 2231-2250, (2006)
[100] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov’s method, Journal of Computational Physics, 32, 1, 101-136, (1979) · Zbl 1364.65223
[101] van Leer, B., Towards the ultimate conservative difference scheme V: A second order sequel to godunov’s method, Journal of Computational Physics, 32, 101-136, (1979) · Zbl 1364.65223
[102] Waugh, D., The efficiency of symmetric vortex merger, Physics of Fluids A, 4, 1745-1758, (1992)
[103] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, 54, 115-173, (1984) · Zbl 0573.76057
[104] Zanotti, O.; Dumbser, M., Numerical simulations of high lundquist number relativistic magnetic reconnection, Monthly Notices of the Royal Astronomical Society, 418, 1004-1011, (2011)
[105] Zhang, Y. T.; Shu, C. W., Third order WENO scheme on three dimensional tetrahedral meshes, Communications in Computational Physics, 5, 836-848, (2009) · Zbl 1364.65177
[106] Zhu, J.; Qiu, J.; Shu, C. W.; Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, Journal of Computational Physics, 227, 4330-4353, (2008) · Zbl 1157.65453
[107] Ziegler, U., The NIRVANA code: parallel computational MHD with adaptive mesh refinement, Computer Physics Communications, 179, 4, 227-244, (2008) · Zbl 1197.76102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.