×

zbMATH — the first resource for mathematics

High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes. (English) Zbl 1349.76311
Summary: We present a novel cell-centered direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume scheme on unstructured triangular meshes that is high order accurate in space and time and that also allows for time-accurate local time stepping (LTS). It extends our previous investigations on high order Lagrangian finite volume schemes with LTS carried out in [46] in one space dimension. The new scheme uses the following basic ingredients: a high order WENO reconstruction in space on unstructured meshes, an element-local high-order accurate space-time Galerkin predictor that performs the time evolution of the reconstructed polynomials within each element, the computation of numerical ALE fluxes at the moving element interfaces through approximate Riemann solvers, and a one-step finite volume scheme for the time update which is directly based on the integral form of the conservation equations in space-time. The inclusion of the LTS algorithm requires a number of crucial extensions, such as a proper scheduling criterion for the time update of each element and for each node; a virtual projection of the elements contained in the reconstruction stencils of the element that has to perform the WENO reconstruction; and the proper computation of the fluxes through the space-time boundary surfaces that will inevitably contain hanging nodes in time due to the LTS algorithm.{
}We have validated our new unstructured Lagrangian LTS approach over a wide sample of test cases solving the Euler equations of compressible gas dynamics in two space dimensions, including shock tube problems, cylindrical explosion problems, as well as specific tests typically adopted in Lagrangian calculations, such as the Kidder, the Saltzman and the Sedov problem. When compared to the traditional global time stepping (GTS) method, the newly proposed LTS algorithm allows to reduce the number of element updates in a given simulation by a factor that may depend on the complexity of the dynamics, but which can be as large as \(\sim4.7\). Finally, we have also shown the improvement in terms of computational efficiency in a representative test for the special relativistic magnetohydrodynamics (RMHD) equations.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics (general theory)
76W05 Magnetohydrodynamics and electrohydrodynamics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
Software:
HE-E1GODF; RIEMANN; ReALE
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aboiyar, T.; Georgoulis, E. H.; Iske, A., Adaptive ADER methods using kernel-based polyharmonic spline WENO reconstruction, SIAM J. Sci. Comput., 32, 3251-3277, (2010) · Zbl 1221.65236
[2] Anile, A. M., Relativistic fluids and magneto-fluids, (February 1990), Cambridge University Press
[3] Avesani, D.; Dumbser, M.; Bellin, A., A new class of moving-least-squares WENO SPH schemes, J. Comput. Phys., 270, 278-299, (2014) · Zbl 1349.76661
[4] Baeza, A.; Martínez-Gavara, A.; Mulet, P., Adaptation based on interpolation errors for high order mesh refinement methods applied to conservation laws, Appl. Numer. Math., 62, 278-296, (2012) · Zbl 1241.65080
[5] Baeza, A.; Mulet, P., Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations, Int. J. Numer. Methods Fluids, 52, 455-471, (2006) · Zbl 1370.76116
[6] Balsara, D., Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. Suppl. Ser., 132, 83-101, (2001)
[7] Balsara, D.; Shu, C. W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452, (2000) · Zbl 0961.65078
[8] Balsara, D. S., Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993, (2010) · Zbl 1303.76140
[9] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231, 7476-7503, (2012) · Zbl 1284.76261
[10] Barth, T. J.; Frederickson, P. O., Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction, (January 1990), in: 28th Aerospace Sciences Meeting, AIAA paper No. 90-0013
[11] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64-84, (May 1989)
[12] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484, (March 1984)
[13] Blumofe, R. D.; Leiserson, C. E., Scheduling multithreaded computations by work stealing, J. ACM, 46, 5, 720-748, (1999) · Zbl 1065.68504
[14] Boscheri, W.; Balsara, D. S.; Dumbser, M., Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers, J. Comput. Phys., 267, 112-138, (2014) · Zbl 1349.76309
[15] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes, Commun. Comput. Phys., 14, 1174-1206, (2013) · Zbl 1388.65075
[16] Boscheri, W.; Dumbser, M., Lagrangian ADER-WENO finite volume schemes on unstructured tetrahedral meshes for conservative and nonconservative hyperbolic systems in 3D, J. Comput. Phys., 275, 484-523, (2014) · Zbl 1349.76310
[17] Boscheri, W.; Dumbser, M.; Balsara, D. S., High order Lagrangian ADER-WENO schemes on unstructured meshes - application of several node solvers to hydrodynamics and magnetohydrodynamics, Int. J. Numer. Methods Fluids, 76, 737-778, (2014)
[18] Boscheri, W.; Dumbser, M., An efficient quadrature-free formulation for high order arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on unstructured meshes, J. Sci. Comput., (2015), submitted to · Zbl 1338.65219
[19] Breil, J.; Harribey, T.; Maire, P. H.; Shashkov, M. J., A multi-material reale method with MOF interface reconstruction, Comput. Fluids, 83, 115-125, (2013) · Zbl 1290.76094
[20] Bürger, R.; Mulet, P.; Villada, L. M., Spectral WENO schemes with adaptive mesh refinement for models of polydisperse sedimentation, Z. Angew. Math. Mech., 93, 6-7, 373-386, (June 2013)
[21] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 5160-5183, (2009) · Zbl 1168.76029
[22] Castro, C. E.; Käser, M.; Toro, E. F., Space-time adaptive numerical methods for geophysical applications, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 367, 4613-4631, (2009) · Zbl 1192.86006
[23] Casulli, V., A semi-implicit finite difference method for non-hydrostatic free-surface flows, Int. J. Numer. Methods Fluids, 30, 425-440, (1999) · Zbl 0944.76050
[24] Casulli, V., A semi-implicit numerical method for the free-surface Navier-Stokes equations, Int. J. Numer. Methods Fluids, 74, 605-622, (2014)
[25] Casulli, V.; Stelling, G. S., Semi-implicit subgrid modelling of three-dimensional free-surface flows, Int. J. Numer. Methods Fluids, 67, 441-449, (2011) · Zbl 1316.76018
[26] Cesenek, J.; Feistauer, M.; Horacek, J.; Kucera, V.; Prokopova, J., Simulation of compressible viscous flow in time-dependent domains, Appl. Math. Comput., 219, 7139-7150, (2013) · Zbl 1426.76233
[27] Cheng, J.; Shu, C. W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, J. Comput. Phys., 227, 1567-1596, (2007) · Zbl 1126.76035
[28] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 4028-4050, (2011) · Zbl 1218.65091
[29] Claisse, A.; Després, B.; Labourasse, E.; Ledoux, F., A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes, J. Comput. Phys., 231, 4324-4354, (2012) · Zbl 1426.76350
[30] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., Discontinuous Galerkin methods, Lect. Notes Comput. Sci. Eng., (2000), Springer
[31] Colella, P.; Glaz, H. M., Efficient solution algorithms for the Riemann problem for real gases, J. Comput. Phys., 59, 264-289, (1985) · Zbl 0581.76079
[32] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673, (2002) · Zbl 1059.76040
[33] Després, B.; Mazeran, C., Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers, C. R., Méc., 331, 475-480, (2003) · Zbl 1293.76089
[34] Després, B.; Mazeran, C., Lagrangian gas dynamics in two-dimensions and Lagrangian systems, Arch. Ration. Mech. Anal., 178, 327-372, (2005) · Zbl 1096.76046
[35] Dinan, J.; Olivier, S.; Sabin, G.; Prins, J.; Sadayappan, P.; Tseng, C. W., A message passing benchmark for unbalanced applications, Simul. Model. Pract. Theory, 16, 1177-1189, (2008)
[36] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63, (2012) · Zbl 1365.76149
[37] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., Curvilinear finite elements for Lagrangian hydrodynamics, Int. J. Numer. Methods Fluids, 65, 1295-1310, (2011) · Zbl 1255.76075
[38] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., High order curvilinear finite elements for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 34, 606-641, (2012)
[39] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, Comput. Fluids, 83, 58-69, (2013) · Zbl 1290.76061
[40] Dolejsi, V., Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows, Commun. Comput. Phys., 4, 231-274, (2008) · Zbl 1364.76085
[41] Dolejsi, V.; Feistauer, M., A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow, J. Comput. Phys., 198, 727-746, (2004) · Zbl 1116.76386
[42] Dolejsi, V.; Feistauer, M.; Hozman, J., Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes, Comput. Methods Appl. Mech. Eng., 196, 2813-2827, (2007) · Zbl 1121.76033
[43] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLLC Riemann solver for unstructured meshes - with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208, (2014) · Zbl 1349.76426
[44] Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6, 345-390, (1991) · Zbl 0742.76059
[45] Dukovicz, J. K.; Meltz, B., Vorticity errors in multidimensional Lagrangian codes, J. Comput. Phys., 99, 115-134, (1992) · Zbl 0743.76058
[46] Dumbser, M., Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws, Comput. Methods Appl. Mech. Eng., 280, 57-83, (2014) · Zbl 1423.76296
[47] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[48] Dumbser, M.; Boscheri, W., High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows, Comput. Fluids, 86, 405-432, (2013) · Zbl 1290.76081
[49] Dumbser, M.; Hidalgo, A.; Zanotti, O., High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 268, 359-387, (2014) · Zbl 1295.65088
[50] Dumbser, M.; Iben, U.; Munz, C. D., Efficient implementation of high order unstructured WENO schemes for cavitating flows, Comput. Fluids, 86, 141-168, (2013) · Zbl 1290.76098
[51] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723, (2007) · Zbl 1110.65077
[52] Dumbser, M.; Käser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226, 204-243, (2007) · Zbl 1124.65074
[53] Dumbser, M.; Käser, M.; Toro, E. F., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: local time stepping and p-adaptivity, Geophys. J. Int., 171, 695-717, (2007)
[54] Dumbser, M.; Schwartzkopff, T.; Munz, C. D., Arbitrary high order finite volume schemes for linear wave propagation, (Computational Science and High Performance Computing II, Notes Numer. Fluid Mech. Multidiscipl. Design, (2006), Springer), 129-144
[55] Dumbser, M.; Toro, E. F., On universal osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 635-671, (2011) · Zbl 1373.76125
[56] Dumbser, M.; Uuriintsetseg, A.; Zanotti, O., On arbitrary-Lagrangian-Eulerian one-step WENO schemes for stiff hyperbolic balance laws, Commun. Comput. Phys., 14, 301-327, (2013) · Zbl 1373.76126
[57] Dumbser, M.; Zanotti, O., Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations, J. Comput. Phys., 228, 6991-7006, (2009) · Zbl 1261.76028
[58] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D. S., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, J. Comput. Phys., 248, 257-286, (2013) · Zbl 1349.76325
[59] Fedkiw, R. P.; Merriman, B.; Osher, S., High accuracy numerical methods for thermally perfect gas flows with chemistry, J. Comput. Phys., 132, 175-190, (1997) · Zbl 0888.76053
[60] Feistauer, M.; Horacek, J.; Ruzicka, M.; Svacek, P., Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom, Comput. Fluids, 49, 110-127, (2011) · Zbl 1271.76165
[61] Ferrari, A.; Munz, C. D.; Weigand, B., A high order sharp interface method with local timestepping for compressible multiphase flows, Commun. Comput. Phys., 9, 205-230, (2011) · Zbl 1284.76265
[62] Flaherty, J.; Loy, R.; Shephard, M.; Szymanski, B.; Teresco, J.; Ziantz, L., Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws, J. Parallel Distrib. Comput., 47, 139-152, (1997)
[63] Francois, M. M.; Shashkov, M. J.; Masser, T. O.; Dendy, E. D., A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation, Comput. Fluids, 83, 126-136, (2013) · Zbl 1290.76133
[64] Vilar, F., Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics, Comput. Fluids, 64, 64-73, (2012) · Zbl 1365.76129
[65] Vilar, F.; Maire, P. H.; Abgrall, R., Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics, Comput. Fluids, 46, 1, 498-604, (2010) · Zbl 1433.76093
[66] Vilar, F.; Maire, P. H.; Abgrall, R., A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids, J. Comput. Phys., 276, 188-234, (2014) · Zbl 1349.76278
[67] Gassner, G.; Lörcher, F.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion II. viscous flow equations in multi dimensions, J. Sci. Comput., 34, 260-286, (2008) · Zbl 1218.76027
[68] Giacomazzo, B.; Rezzolla, L., The exact solution of the Riemann problem in relativistic magnetohydrodynamics, J. Fluid Mech., 562, 223-259, (2006) · Zbl 1097.76073
[69] Grote, M. J.; Mitkova, T., Explicit local time-stepping methods for Maxwell’s equations, J. Comput. Appl. Math., 234, 3283-3302, (2010) · Zbl 1210.78026
[70] Grote, M. J.; Mitkova, T., High-order explicit local time-stepping methods for damped wave equations, J. Comput. Appl. Math., 239, 270-289, (2013) · Zbl 1255.65174
[71] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection diffusion reaction equations, J. Sci. Comput., 48, 173-189, (2011) · Zbl 1221.65231
[72] Hu, C.; Shu, C. W., A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 150, 561-594, (1999) · Zbl 0937.76051
[73] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[74] Kamm, J. R.; Timmes, F. X., On efficient generation of numerically robust sedov solutions, (2007), LANL, Technical Report LA-UR-07-2849
[75] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp element methods in CFD, (1999), Oxford University Press · Zbl 0924.76078
[76] Käser, M.; Iske, A., ADER schemes on adaptive triangular meshes for scalar conservation laws, J. Comput. Phys., 205, 486-508, (2005) · Zbl 1072.65116
[77] Kidder, R. E., Laser-driven compression of hollow shells: power requirements and stability limitations, Nucl. Fusion, 1, 3-14, (1976)
[78] Komissarov, S. S., A Godunov-type scheme for relativistic magnetohydrodynamics, Mon. Not. R. Astron. Soc., 303, 343-366, (February 1999)
[79] Krivodonova, L., An efficient local time-stepping scheme for solution of nonlinear conservation laws, J. Comput. Phys., 229, 8537-8551, (2010) · Zbl 1201.65171
[80] Li, Z.; Yu, X.; Jia, Z., The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions, Comput. Fluids, 96, 152-164, (2014) · Zbl 1391.76347
[81] Liu, W.; Cheng, J.; Shu, C. W., High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations, J. Comput. Phys., 228, 8872-8891, (2009) · Zbl 1287.76181
[82] Lörcher, F.; Gassner, G.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion. I. inviscid compressible flow in one space dimension, J. Sci. Comput., 32, 175-199, (2007) · Zbl 1143.76047
[83] Loubère, R.; Dumbser, M.; Diot, S., A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 718-763, (2014) · Zbl 1373.76137
[84] Loubère, R.; Maire, P. H.; Váchal, P., A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver, Proc. Comput. Sci., 1, 1931-1939, (2010) · Zbl 1432.76206
[85] Loubère, R.; Maire, P. H.; Váchal, P., 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity, Int. J. Numer. Methods Fluids, 72, 22-42, (2013)
[86] Maire, P. H., A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry, J. Comput. Phys., 228, 6882-6915, (2009) · Zbl 1261.76021
[87] Maire, P. H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys., 228, 2391-2425, (2009) · Zbl 1156.76434
[88] Maire, P. H., A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Comput. Fluids, 46, 1, 341-347, (2011) · Zbl 1433.76137
[89] Maire, P. H., A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Int. J. Numer. Methods Fluids, 65, 1281-1294, (2011) · Zbl 1429.76089
[90] Maire, P. H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 1781-1824, (2007) · Zbl 1251.76028
[91] Maire, P. H.; Breil, J., A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, Int. J. Numer. Methods Fluids, 56, 1417-1423, (2007) · Zbl 1151.76021
[92] Maire, P. H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J. Comput. Phys., 228, 799-821, (2009) · Zbl 1156.76039
[93] Menikoff, R.; Plohr, B. J., The Riemann problem for fluid flow of real materials, Rev. Mod. Phys., 61, 75-130, (1989) · Zbl 1129.35439
[94] Müller, S.; Voss, A., The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves, SIAM J. Sci. Comput., 28, 651-681, (2006) · Zbl 1114.35127
[95] Munz, C. D., On Godunov-type schemes for Lagrangian gas dynamics, SIAM J. Numer. Anal., 31, 17-42, (1994) · Zbl 0796.76057
[96] Olliver-Gooch, C.; Van Altena, M., A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, J. Comput. Phys., 181, 729-752, (2002) · Zbl 1178.76251
[97] López Ortega, A.; Scovazzi, G., A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements, J. Comput. Phys., 230, 6709-6741, (2011) · Zbl 1284.76255
[98] Powers, J. M.; Paolucci, S., Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry, AIAA J., 43, 1088-1099, (2005)
[99] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids, Int. J. Numer. Methods Fluids, 72, 770-810, (2013)
[100] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes, Comput. Fluids, 83, 98-114, (2013) · Zbl 1290.76107
[101] Scovazzi, G., Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach, J. Comput. Phys., 231, 8029-8069, (2012)
[102] Sekora, M. D.; Stone, J. M., A hybrid Godunov method for radiation hydrodynamics, J. Comput. Phys., 229, 6819-6852, (2010) · Zbl 1426.76421
[103] Stroud, A. H., Approximate calculation of multiple integrals, (1971), Prentice Hall Inc. Englewood Cliffs, NJ · Zbl 0379.65013
[104] Taube, A.; Dumbser, M.; Munz, C. D.; Schneider, R., A high order discontinuous Galerkin method with local time stepping for the Maxwell equations, Int. J. Numer. Model., 22, 77-103, (2009) · Zbl 1156.78012
[105] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736, (2005) · Zbl 1060.65641
[106] Titarev, V. A.; Tsoutsanis, P.; Drikakis, D., WENO schemes for mixed-element unstructured meshes, Commun. Comput. Phys., 8, 585-609, (2010) · Zbl 1364.76121
[107] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165, (2006) · Zbl 1087.65590
[108] Toro, E. F., Anomalies of conservative methods: analysis, numerical evidence and possible cures, Int. J. Comput. Fluid Dyn., 11, 128-143, (2002)
[109] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: A practical introduction, (2009), Springer · Zbl 1227.76006
[110] Tsoutsanis, P.; Titarev, V. A.; Drikakis, D., WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions, J. Comput. Phys., 230, 1585-1601, (2011) · Zbl 1210.65160
[111] Utzmann, J.; Schwartzkopff, T.; Dumbser, M.; Munz, C. D., Heterogeneous domain decomposition for computational aeroacoustics, AIAA J., 44, 2231-2250, (2006)
[112] Yanilkin, Y. V.; Goncharov, E. A.; Kolobyanin, V. Y.; Sadchikov, V. V.; Kamm, J. R.; Shashkov, M. J.; Rider, W. J., Multi-material pressure relaxation methods for Lagrangian hydrodynamics, Comput. Fluids, 83, 137-143, (2013) · Zbl 1290.76138
[113] Del Zanna, L.; Bucciantini, N.; Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows II. magnetohydrodynamics, Astron. Astrophys., 400, 397-413, (2003) · Zbl 1222.76122
[114] Zanotti, O.; Dumbser, M., A high order special relativistic hydrodynamic code with space-time adaptive mesh refinement, Comput. Phys. Commun., 188, 110-127, (2015) · Zbl 1344.76058
[115] Zanotti, O.; Roedig, C.; Rezzolla, L.; Del Zanna, L., General relativistic radiation hydrodynamics of accretion flows - I. Bondi-Hoyle accretion, Mon. Not. R. Astron. Soc., 417, 2899-2915, (November 2011)
[116] Zhang, Y. T.; Shu, C. W., Third order WENO scheme on three dimensional tetrahedral meshes, Commun. Comput. Phys., 5, 836-848, (2009) · Zbl 1364.65177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.