×

zbMATH — the first resource for mathematics

A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. (English) Zbl 1349.76310
Summary: In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes.
We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics (general theory)
Software:
ReALE; HE-E1GODF
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, J. Comput. Phys., 144, 45-58, (1994) · Zbl 0822.65062
[2] Andrianov, N.; Warnecke, G., The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 212, 434-464, (2004) · Zbl 1115.76414
[3] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, 12, 861-889, (1986) · Zbl 0609.76114
[4] Balsara, D.; Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292, (1999) · Zbl 0936.76051
[5] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504-7517, (2012)
[6] Barth, T. J.; Frederickson, P. O., Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction, (28th Aerospace Sciences Meeting, (January 1990)), AIAA paper No. 90-0013
[7] Ben-Artzi, M.; Falcovitz, J., A second-order Godunov-type scheme for compressible fluid dynamics, J. Comput. Phys., 55, 1-32, (1984) · Zbl 0535.76070
[8] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394, (1992) · Zbl 0763.73052
[9] Berndt, M.; Breil, J.; Galera, S.; Kucharik, M.; Maire, P. H.; Shashkov, M., Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 230, 6664-6687, (2011) · Zbl 1408.65077
[10] Berndt, M.; Kucharik, M.; Shashkov, M. J., Using the feasible set method for rezoning in ALE, Proc. Comput. Sci., 1, 1879-1886, (2010)
[11] Bochev, P.; Ridzal, D.; Shashkov, M. J., Fast optimization-based conservative remap of scalar fields through aggregate mass transfer, J. Comput. Phys., 246, 37-57, (2013) · Zbl 1349.65054
[12] Boscheri, W.; Balsara, D. S.; Dumbser, M., Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers, J. Comput. Phys., 267, 112-138, (2014) · Zbl 1349.76309
[13] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes, Commun. Comput. Phys., 14, 1174-1206, (2013) · Zbl 1388.65075
[14] Boscheri, W.; Dumbser, M.; Balsara, D. S., High order Lagrangian ADER-WENO schemes on unstructured meshes - application of several node solvers to hydrodynamics and magnetohydrodynamics, Int. J. Numer. Methods Fluids, (2014), in press
[15] Boscheri, W.; Dumbser, M.; Righetti, M., A semi-implicit scheme for 3d free surface flows with high order velocity reconstruction on unstructured Voronoi meshes, Int. J. Numer. Methods Fluids, 72, 607-631, (2013)
[16] Bourgeade, A.; LeFloch, P.; Raviart, P. A., An asymptotic expansion for the solution of the generalized Riemann problem. part II: application to the gas dynamics equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6, 437-480, (1989) · Zbl 0703.35106
[17] Breil, J.; Harribey, T.; Maire, P. H.; Shashkov, M. J., A multi-material reale method with MOF interface reconstruction, Comput. Fluids, 83, 115-125, (2013) · Zbl 1290.76094
[18] Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146, 227-262, (1998) · Zbl 0931.76080
[19] Caramana, E. J.; Rousculp, C. L.; Burton, D. E., A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three-dimensional Cartesian geometry, J. Comput. Phys., 157, 89-119, (2000) · Zbl 0961.76049
[20] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 5160-5183, (2009) · Zbl 1168.76029
[21] Castro, M. J.; Gallardo, J. M.; López, J. A.; Parés, C., Well-balanced high order extensions of Godunov’s method for semilinear balance laws, SIAM J. Numer. Anal., 46, 1012-1039, (2008) · Zbl 1159.74045
[22] Castro, M. J.; Gallardo, J. M.; Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems, Math. Comput., 75, 1103-1134, (2006) · Zbl 1096.65082
[23] Casulli, V., Semi-implicit finite difference methods for the two-dimensional shallow water equations, J. Comput. Phys., 86, 56-74, (1990) · Zbl 0681.76022
[24] Casulli, V.; Cheng, R. T., Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluids, 15, 629-648, (1992) · Zbl 0762.76068
[25] Cesenek, J.; Feistauer, M.; Horacek, J.; Kucera, V.; Prokopova, J., Simulation of compressible viscous flow in time-dependent domains, Appl. Comput. Math., 219, 7139-7150, (2013) · Zbl 1426.76233
[26] Cheng, J.; Shu, C. W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, J. Comput. Phys., 227, 1567-1596, (2007) · Zbl 1126.76035
[27] Cheng, J.; Shu, C. W., A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry, J. Comput. Phys., 229, 7191-7206, (2010) · Zbl 1425.35142
[28] Cheng, J.; Shu, C. W., Improvement on spherical symmetry in two-dimensional cylindrical coordinates for a class of control volume Lagrangian schemes, Commun. Comput. Phys., 11, 1144-1168, (2012) · Zbl 1373.76158
[29] Cheng, J.; Toro, E. F., A 1D conservative Lagrangian ADER scheme, Chin. J. Comput. Phys., 30, 501-508, (2013)
[30] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (mood), J. Comput. Phys., 230, 4028-4050, (2011) · Zbl 1218.65091
[31] Claisse, A.; Després, B.; Labourasse, E.; Ledoux, F., A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes, J. Comput. Phys., 231, 4324-4354, (2012) · Zbl 1426.76350
[32] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., Discontinuous Galerkin methods, Lecture Notes in Computational Science and Engineering, (2000), Springer
[33] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673, (2002) · Zbl 1059.76040
[34] Deledicque, V.; Papalexandris, M. V., An exact Riemann solver for compressible two-phase flow models containing non-conservative products, J. Comput. Phys., 222, 217-245, (2007) · Zbl 1216.76044
[35] Després, B.; Mazeran, C., Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers, C. R., Méc., 331, 475-480, (2003) · Zbl 1293.76089
[36] Després, B.; Mazeran, C., Lagrangian gas dynamics in two-dimensions and Lagrangian systems, Arch. Ration. Mech. Anal., 178, 327-372, (2005) · Zbl 1096.76046
[37] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials, J. Comput. Phys., 64, 43-63, (2012) · Zbl 1365.76149
[38] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., Curvilinear finite elements for Lagrangian hydrodynamics, Int. J. Numer. Methods Fluids, 65, 1295-1310, (2011) · Zbl 1255.76075
[39] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., High order curvilinear finite elements for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 34, 606-641, (2012)
[40] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, Comput. Fluids, 83, 58-69, (2013) · Zbl 1290.76061
[41] Dumbser, M.; Balsara, D. S.; Abgrall, R., Multidimensional HLLC Riemann solver for unstructured meshes - with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208, (2014) · Zbl 1349.76426
[42] Dubcova, L.; Feistauer, M.; Horacek, J.; Svacek, P., Numerical simulation of interaction between turbulent flow and a vibrating airfoil, Comput. Vis. Sci., 12, 207-225, (2009) · Zbl 1426.74127
[43] Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6, 345-390, (1991) · Zbl 0742.76059
[44] Dukovicz, J. K.; Meltz, B., Vorticity errors in multidimensional Lagrangian codes, J. Comput. Phys., 99, 115-134, (1992) · Zbl 0743.76058
[45] Dukowicz, J. K., A general non-iterative Riemann solver for Godunov’s method, J. Comput. Phys., 61, 119-137, (1984) · Zbl 0629.76074
[46] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[47] Dumbser, M.; Boscheri, W., High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows, Comput. Fluids, 86, 405-432, (2013) · Zbl 1290.76081
[48] Dumbser, M.; Castro, M.; Parés, C.; Toro, E. F., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 1731-1748, (2009) · Zbl 1177.76222
[49] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227, 3971-4001, (2008) · Zbl 1142.65070
[50] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E. F., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647, (2010) · Zbl 1227.76043
[51] Dumbser, M.; Kaeser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226, 204-243, (2007) · Zbl 1124.65074
[52] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723, (2007) · Zbl 1110.65077
[53] Dumbser, M.; Käser, M.; Toro, E. F., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: local time stepping and p-adaptivity, Geophys. J. Int., 171, 695-717, (2007)
[54] Dumbser, M.; Toro, E. F., On universal osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 635-671, (2011) · Zbl 1373.76125
[55] Dumbser, M.; Toro, E. F., A simple extension of the osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88, (2011) · Zbl 1220.65110
[56] Dumbser, M.; Uuriintsetseg, A.; Zanotti, O., On arbitrary-Lagrangian-Eulerian one-step WENO schemes for stiff hyperbolic balance laws, Commun. Comput. Phys., 14, 301-327, (2013) · Zbl 1373.76126
[57] Dumbser, M.; Zanotti, O., Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations, J. Comput. Phys., 228, 6991-7006, (2009) · Zbl 1261.76028
[58] Feistauer, M.; Horacek, J.; Ruzicka, M.; Svacek, P., Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom, Comput. Fluids, 49, 110-127, (2011) · Zbl 1271.76165
[59] Feistauer, M.; Kucera, V.; Prokopova, J.; Horacek, J., The ALE discontinuous Galerkin method for the simulation of air flow through pulsating human vocal folds, AIP Conf. Proc., 1281, 83-86, (2010)
[60] Ferrari, A., SPH simulation of free surface flow over a sharp-crested weir, Adv. Water Resour., 33, 270-276, (2010)
[61] Ferrari, A.; Dumbser, M.; Toro, E. F.; Armanini, A., A new stable version of the SPH method in Lagrangian coordinates, Commun. Comput. Phys., 4, 378-404, (2008) · Zbl 1364.76175
[62] Ferrari, A.; Dumbser, M.; Toro, E. F.; Armanini, A., A new 3D parallel SPH scheme for free surface flows, Comput. Fluids, 38, 1203-1217, (2009) · Zbl 1242.76270
[63] Ferrari, A.; Fraccarollo, L.; Dumbser, M.; Toro, E. F.; Armanini, A., Three-dimensional flow evolution after a dambreak, J. Fluid Mech., 663, 456-477, (2010) · Zbl 1205.76228
[64] Le Floch, P.; Raviart, P. A., An asymptotic expansion for the solution of the generalized Riemann problem. part I: general theory, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 5, 179-207, (1988) · Zbl 0679.35064
[65] Francois, M. M.; Shashkov, M. J.; Masser, T. O.; Dendy, E. D., A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation, Comput. Fluids, 83, 126-136, (2013) · Zbl 1290.76133
[66] Friedrich, O., Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, J. Comput. Phys., 144, 194-212, (1998) · Zbl 1392.76048
[67] Vilar, F., Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics, Comput. Fluids, 64, 64-73, (2012) · Zbl 1365.76129
[68] Vilar, F.; Maire, P. H.; Abgrall, R., A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids, (2014), INRIA Research Report N° 8483 · Zbl 1349.76278
[69] Vilar, F.; Maire, P. H.; Abgrall, R., Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics, Comput. Fluids, 46, 1, 498-604, (2010) · Zbl 1433.76093
[70] Galera, S.; Maire, P. H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ale scheme using vof interface reconstruction, J. Comput. Phys., 229, 5755-5787, (2010) · Zbl 1346.76105
[71] Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Math. USSR Sb., 47, 271-306, (1959) · Zbl 0171.46204
[72] Healy, R. W.; Russel, T. F., Solution of the advection-dispersion equation in two dimensions by a finite-volume eulerian-Lagrangian localized adjoint method, Adv. Water Resour., 21, 11-26, (1998)
[73] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J. Sci. Comput., 48, 173-189, (2011) · Zbl 1221.65231
[74] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227-253, (1974) · Zbl 0292.76018
[75] Hu, C.; Shu, C. W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97-127, (1999) · Zbl 0926.65090
[76] Huang, C. S.; Arbogast, T.; Qiu, J., An eulerian-Lagrangian WENO finite volume scheme for advection problems, J. Comput. Phys., 231, 4028-4052, (2012) · Zbl 1260.65083
[77] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[78] Kamm, J. R.; Timmes, F. X., On efficient generation of numerically robust sedov solutions, (2007), Technical Report LA-UR-07-2849, LANL
[79] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modelling of DDT in granular materials: reduced equations, Phys. Fluids, 13, 3002-3024, (2001) · Zbl 1184.76268
[80] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp element methods in CFD, (1999), Oxford University Press · Zbl 0954.76001
[81] Käser, M.; Iske, A., ADER schemes on adaptive triangular meshes for scalar conservation laws, J. Comput. Phys., 205, 486-508, (2005) · Zbl 1072.65116
[82] Kidder, R. E., Laser-driven compression of hollow shells: power requirements and stability limitations, Nucl. Fusion, 1, 3-14, (1976)
[83] Knupp, P. M., Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated quantities. part II - a framework for volume mesh optimization and the condition number of the Jacobian matrix, Int. J. Numer. Methods Eng., 48, 1165-1185, (2000) · Zbl 0990.74069
[84] Kucharik, M.; Breil, J.; Galera, S.; Maire, P. H.; Berndt, M.; Shashkov, M. J., Hybrid remap for multi-material ALE, Comput. Fluids, 46, 293-297, (2011) · Zbl 1433.76133
[85] Kucharik, M.; Shashkov, M., Conservative multi-material remap for staggered multi-material arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 258, 268-304, (2014) · Zbl 1349.76493
[86] Kucharik, M.; Shashkov, M. J., One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 231, 2851-2864, (2012) · Zbl 1323.74108
[87] Lentine, M.; Grétarsson, J. T.; Fedkiw, R., An unconditionally stable fully conservative semi-Lagrangian method, J. Comput. Phys., 230, 2857-2879, (2011) · Zbl 1316.76076
[88] Li, Z.; Yu, X.; Jia, Z., The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions, Comput. Fluids, 96, 152-164, (2014) · Zbl 1391.76347
[89] Liska, R.; Váchal, M. J. Shashkov P.; Wendroff, B., Synchronized flux corrected remapping for ALE methods, Comput. Fluids, 46, 312-317, (2011) · Zbl 1433.76135
[90] Liu, W.; Cheng, J.; Shu, C. W., High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations, J. Comput. Phys., 228, 8872-8891, (2009) · Zbl 1287.76181
[91] Loubère, R.; Dumbser, M.; Diot, S., A new family of unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 3, 718-763, (2014) · Zbl 1373.76137
[92] Loubère, R.; Maire, P. H.; Váchal, P., A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver, Proc. Comput. Sci., 1, 1931-1939, (2010) · Zbl 1432.76206
[93] Loubère, R.; Maire, P. H.; Váchal, P., 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity, Int. J. Numer. Methods Fluids, 72, 22-42, (2013)
[94] Maire, P. H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys., 228, 2391-2425, (2009) · Zbl 1156.76434
[95] Maire, P. H., A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Comput. Fluids, 46, 1, 341-347, (2011) · Zbl 1433.76137
[96] Maire, P. H., A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Int. J. Numer. Methods Fluids, 65, 1281-1294, (2011) · Zbl 1429.76089
[97] Maire, P. H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 1781-1824, (2007) · Zbl 1251.76028
[98] Maire, P. H.; Breil, J., A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, Int. J. Numer. Methods Fluids, 56, 1417-1423, (2007) · Zbl 1151.76021
[99] Maire, P. H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J. Comput. Phys., 228, 799-821, (2009) · Zbl 1156.76039
[100] Monaghan, J. J., Simulating free surface flows with SPH, J. Comput. Phys., 110, 399-406, (1994) · Zbl 0794.76073
[101] Munz, C. D., On Godunov-type schemes for Lagrangian gas dynamics, SIAM J. Numer. Anal., 31, 17-42, (1994) · Zbl 0796.76057
[102] Olliver-Gooch, C.; Van Altena, M., A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, J. Comput. Phys., 181, 729-752, (2002) · Zbl 1178.76251
[103] López Ortega, A.; Scovazzi, G., A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements, J. Comput. Phys., 230, 6709-6741, (2011) · Zbl 1284.76255
[104] Osher, S.; Solomon, F., Upwind difference schemes for hyperbolic conservation laws, Math. Comput., 38, 339-374, (1982) · Zbl 0483.65055
[105] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321, (2006) · Zbl 1130.65089
[106] Peery, J. S.; Carroll, D. E., Multi-material ale methods in unstructured grids, Comput. Methods Appl. Mech. Eng., 187, 591-619, (2000) · Zbl 0980.74068
[107] Qiu, J. M.; Shu, C. W., Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow, J. Comput. Phys., 230, 863-889, (2011) · Zbl 1391.76489
[108] Rhebergen, S.; Bokhove, O.; van der Vegt, J. J.W., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., 227, 1887-1922, (2008) · Zbl 1153.65097
[109] Riemslagh, K.; Vierendeels, J.; Dick, E., An arbitrary Lagrangian-Eulerian finite-volume method for the simulation of rotary displacement pump flow, Appl. Numer. Math., 32, 419-433, (2000) · Zbl 0965.76055
[110] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids, Int. J. Numer. Methods Fluids, 72, 770-810, (2013)
[111] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes, Comput. Fluids, 83, 98-114, (2013) · Zbl 1290.76107
[112] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467, (1999) · Zbl 0937.76053
[113] Saurel, R.; Gavrilyuk, S.; Renaud, F., A multiphase model with internal degrees of freedom: application to shock-bubble interaction, J. Fluid Mech., 495, 283-321, (2003) · Zbl 1080.76062
[114] Schwendeman, D. W.; Wahle, C. W.; Kapila, A. K., The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys., 212, 490-526, (2006) · Zbl 1161.76531
[115] Scovazzi, G., Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach, J. Comput. Phys., 231, 8029-8069, (2012)
[116] Shashkov, M., Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes, Int. J. Numer. Methods Fluids, 56, 8, 1497-1504, (2008) · Zbl 1151.76026
[117] Smith, R. W., AUSM(ALE): a geometrically conservative arbitrary Lagrangian-Eulerian flux splitting scheme, J. Comput. Phys., 150, 268-286, (1999) · Zbl 0936.76046
[118] Stroud, A. H., Approximate calculation of multiple integrals, (1971), Prentice-Hall Inc. Englewood Cliffs, New Jersey · Zbl 0379.65013
[119] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618, (December 2002)
[120] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736, (2005) · Zbl 1060.65641
[121] Titarev, V. A.; Tsoutsanis, P.; Drikakis, D., WENO schemes for mixed-element unstructured meshes, Commun. Comput. Phys., 8, 585-609, (2010) · Zbl 1364.76121
[122] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165, (2006) · Zbl 1087.65590
[123] Toro, E. F., Anomalies of conservative methods: analysis, numerical evidence and possible cures, Int. J. Comput. Fluid Dyn., 11, 128-143, (2002)
[124] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: A practical introduction, (2009), Springer · Zbl 1227.76006
[125] Toumi, I., A weak formulation of Roe’s approximate Riemann solver, J. Comput. Phys., 102, 360-373, (1992) · Zbl 0783.65068
[126] Tsoutsanis, P.; Titarev, V. A.; Drikakis, D., WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions, J. Comput. Phys., 230, 1585-1601, (2011) · Zbl 1210.65160
[127] von Neumann, J.; Richtmyer, R. D., A method for the calculation of hydrodynamics shocks, J. Appl. Phys., 21, 232-237, (1950) · Zbl 0037.12002
[128] Yanilkin, Y. V.; Goncharov, E. A.; Kolobyanin, V. Y.; Sadchikov, V. V.; Kamm, J. R.; Shashkov, M. J.; Rider, W. J., Multi-material pressure relaxation methods for Lagrangian hydrodynamics, Comput. Fluids, 83, 137-143, (2013) · Zbl 1290.76138
[129] Zhang, Y. T.; Shu, C. W., Third order WENO scheme on three dimensional tetrahedral meshes, Commun. Comput. Phys., 5, 836-848, (2009) · Zbl 1364.65177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.