×

zbMATH — the first resource for mathematics

A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes. (English) Zbl 1349.76271
Summary: In this paper we propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. As is typical for space-time DG schemes, the discrete solution is represented in terms of space-time basis functions. This allows to achieve very high order of accuracy also in time, which is not easy to obtain for the incompressible Navier-Stokes equations. Similarly to staggered finite difference schemes, in our approach the discrete pressure is defined on the primary tetrahedral grid, while the discrete velocity is defined on a face-based staggered dual grid. While staggered meshes are state of the art in classical finite difference schemes for the incompressible Navier-Stokes equations, their use in high order DG schemes is still quite rare. A very simple and efficient Picard iteration is used in order to derive a space-time pressure correction algorithm that achieves also high order of accuracy in time and that avoids the direct solution of global nonlinear systems. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse five-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we find that the linear system seems to be reasonably well conditioned, since all simulations shown in this paper could be run without the use of any preconditioner, even up to very high polynomial degrees. For a piecewise constant polynomial approximation in time and if pressure boundary conditions are specified at least in one point, the resulting system is, in addition, symmetric and positive definite. This allows us to use even faster iterative solvers, like the conjugate gradient method. The flexibility and accuracy of high order space-time DG methods on curved unstructured meshes allows to discretize even complex physical domains with very coarse grids in both, space and time. The proposed method is verified for approximation polynomials of degree up to four in space and time by solving a series of typical 3D test problems and by comparing the obtained numerical results with available exact analytical solutions, or with other numerical or experimental reference data. To the knowledge of the authors, this is the first time that a space-time discontinuous Galerkin finite element method is presented for the three-dimensional incompressible Navier-Stokes equations on staggered unstructured tetrahedral grids.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Harlow, F.; Welch, J., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids, 8, 2182-2189, (1965) · Zbl 1180.76043
[2] Patankar, V.; Spalding, B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transf., 15, 1787-1806, (1972) · Zbl 0246.76080
[3] Patankar, V., Numerical heat transfer and fluid flow, (1980), Hemisphere Publishing Corporation · Zbl 0521.76003
[4] van Kan, J., A second-order accurate pressure correction method for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7, 870-891, (1986) · Zbl 0594.76023
[5] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. Fluids, 1, 73-100, (1973) · Zbl 0328.76020
[6] Brooks, A.; Hughes, T., Stream-line upwind/Petrov Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation, Comput. Methods Appl. Mech. Eng., 32, 199-259, (1982) · Zbl 0497.76041
[7] Hughes, T.; Mallet, M.; Mizukami, M., A new finite element formulation for computational fluid dynamics: II. beyond SUPG, Comput. Methods Appl. Mech. Eng., 54, 341-355, (1986) · Zbl 0622.76074
[8] Fortin, M., Old and new finite elements for incompressible flows, Int. J. Numer. Methods Fluids, 1, 347-364, (1981) · Zbl 0467.76030
[9] Verfürth, R., Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II, Numer. Math., 59, 615-636, (1991) · Zbl 0739.76034
[10] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem. I. regularity of solutions and second order error estimates for spatial discretization, SIAM J. Numer. Anal., 19, 275-311, (1982) · Zbl 0487.76035
[11] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem. III. smoothing property and higher order error estimates for spatial discretization, SIAM J. Numer. Anal., 25, 489-512, (1988) · Zbl 0646.76036
[12] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279, (1997) · Zbl 0871.76040
[13] Baumann, C.; Oden, J., A discontinuous hp finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Eng., 175, 311-341, (1999) · Zbl 0924.76051
[14] Baumann, C.; Oden, J., A discontinuous hp finite element method for the Euler and Navier-Stokes equations, Int. J. Numer. Methods Fluids, 31, 79-95, (1999) · Zbl 0985.76048
[15] Bassi, F.; Crivellini, A.; Pietro, D. D.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 218, 208-221, (2006) · Zbl 1158.76313
[16] Bassi, F.; Crivellini, A.; Pietro, D. D.; Rebay, S., An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows, Comput. Fluids, 36, 1529-1546, (2007) · Zbl 1194.76102
[17] Gassner, G.; Lörcher, F.; Munz, C. D., A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes, J. Comput. Phys., 224, 1049-1063, (2007) · Zbl 1123.76040
[18] Gassner, G.; Lörcher, F.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion II. viscous flow equations in multi dimensions, J. Sci. Comput., 34, 260-286, (2008) · Zbl 1218.76027
[19] Dumbser, M., Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput. Fluids, 39, 60-76, (2010) · Zbl 1242.76161
[20] Hartmann, R.; Houston, P., Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: method formulation, Int. J. Numer. Anal. Model., 3, 1-20, (2006) · Zbl 1129.76030
[21] Hartmann, R.; Houston, P., An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations, J. Comput. Phys., 227, 9670-9685, (2008) · Zbl 1359.76220
[22] Shahbazi, K.; Fischer, P. F.; Ethier, C. R., A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 222, 391-407, (2007) · Zbl 1216.76034
[23] Luo, H.; Luo, L.; Nourgaliev, R.; Mousseau, V.; Dinh, N., A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, J. Comput. Phys., 229, 6961-6978, (2010) · Zbl 1425.35138
[24] Ferrer, E.; Willden, R., A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput. Fluids, 46, 224-230, (2011) · Zbl 1431.76011
[25] Nguyen, N.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 230, 1147-1170, (2011) · Zbl 1391.76353
[26] Crivellini, A.; D’Alessandro, V.; Bassi, F., High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations, Comput. Fluids, 81, 122-133, (2013) · Zbl 1285.76014
[27] Klein, B.; Kummer, F.; Oberlack, M., A SIMPLE based discontinuous Galerkin solver for steady incompressible flows, J. Comput. Phys., 237, 235-250, (2013) · Zbl 1286.76124
[28] Cockburn, B.; Lin, S. Y.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84, 90-113, (1989) · Zbl 0677.65093
[29] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 54, 545-581, (1990) · Zbl 0695.65066
[30] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224, (1998) · Zbl 0920.65059
[31] van der Vegt, J. J.W.; van der Ven, H., Space—time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. general formulation, J. Comput. Phys., 182, 546-585, (2002) · Zbl 1057.76553
[32] van der Ven, H.; van der Vegt, J. J.W., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. efficient flux quadrature, Comput. Methods Appl. Mech. Eng., 191, 4747-4780, (2002) · Zbl 1099.76521
[33] Klaij, C.; der Vegt, J. V.; der Ven, H. V., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 217, 589-611, (2006) · Zbl 1099.76035
[34] Rhebergen, S.; Cockburn, B., A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys., 231, 4185-4204, (2012) · Zbl 1426.76298
[35] Rhebergen, S.; Cockburn, B.; van der Vegt, J. J., A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 233, 339-358, (2013) · Zbl 1286.76033
[36] Balazsova, M.; Feistauer, M., On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains, Appl. Math., 60, 501-526, (2015) · Zbl 1363.65157
[37] Balazsova, M.; Feistauer, M.; Hadrava, M.; Kosik, A., On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems, J. Numer. Math., 23, 211-233, (2015) · Zbl 1327.65168
[38] Dumbser, M.; Facchini, M., A local space-time discontinuous Galerkin method for Boussinesq-type equations, Appl. Math. Comput., 272, 336-346, (2016)
[39] Tavelli, M.; Dumbser, M., A staggered arbitrary high order semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations, Comput. Fluids, 119, 235-249, (2015) · Zbl 1390.76360
[40] Wang, L.; Persson, P., A high-order discontinuous Galerkin method with unstructured space-time meshes for two-dimensional compressible flows on domains with large deformations, Comput. Fluids, 118, 53-68, (2015) · Zbl 1390.76366
[41] Demkowicz, L.; Oden, J.; Strouboulis, T., Adaptive finite elements for flow problems with moving boundaries. part I: variational principles and a posteriori estimates, Comput. Methods Appl. Mech. Eng., 46, 217-251, (1984) · Zbl 0583.76025
[42] Remihi, F.; Aloui, F.; Nasrallah, S. B.; Doubliez, L.; Legrand, J., Experimental investigation of a confined flow downstream of a circular cylinder centred between two parallel walls, J. Fluids Struct., 24, 855-882, (2008)
[43] Williamson, C., The existence of two stages in the transition to three-dimensionality of a cylinder wake, Phys. Fluids, 24, 855-882, (1988)
[44] Sakamoto, H.; Haniu, H., A study on vortex shedding from spheres in a uniform flow, J. Fluids Eng., 112, 386-392, (1990)
[45] Armaly, B.; Durst, F.; Pereira, J.; Schonung, B., Experimental and theoretical investigation on backward-facing step flow, J. Fluid Mech., 127, 473-496, (1983)
[46] Ku, H. C.; Hirsh, R. S.; Taylor, T. D., A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations, J. Comput. Phys., 70, 439-462, (1987) · Zbl 0658.76027
[47] Aidun, C. K.; Triantafillopoulos, N.; Benson, J., Global stability of a lid-driven cavity with throughflow: flow visualization studies, Phys. Fluids, 3, 2081-2091, (1991)
[48] Brachet, M.; Meiron, D.; Orszag, S., Small-scale structure of the Taylor-Green vortex, J. Fluid Mech., 130, 411-452, (1983) · Zbl 0517.76033
[49] Kanaris, N.; Grigoriadis, D.; Kassinos, S., Three dimensional flow around a circular cylinder confined in a plane channel, Phys. Fluids, 23, (2011)
[50] Ribeiro, V.; Coelho, P.; Pinho, F.; Alves, M., Three-dimensional effects in laminar flow past a confined cylinder, Chem. Eng. Sci., 84, 155-169, (2012)
[51] Kravchenko, A.; Moin, P., Numerical studies of flow over a circular cylinder at \(R e_D = 3900\), Phys. Fluids, 12, 403, (2000) · Zbl 1149.76441
[52] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409-436, (1952) · Zbl 0048.09901
[53] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869, (1986) · Zbl 0599.65018
[54] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779, (2002) · Zbl 1008.65080
[55] Liu, Y. J.; Shu, C. W.; Tadmor, E.; Zhang, M., Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal., 45, 2442-2467, (2007) · Zbl 1157.65450
[56] Liu, Y. J.; Shu, C. W.; Tadmor, E.; Zhang, M., L2-stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods, Math. Model. Numer. Anal., 42, 593-607, (2008) · Zbl 1152.65095
[57] Chung, E.; Engquist, B., Optimal discontinuous Galerkin methods for wave propagation, SIAM J. Numer. Anal., 44, 2131-2158, (2006) · Zbl 1158.65337
[58] Chung, E. T.; Lee, C. S., A staggered discontinuous Galerkin method for the convection-diffusion equation, J. Numer. Math., 20, 1-31, (2012) · Zbl 1300.65065
[59] Dumbser, M.; Casulli, V., A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations, Appl. Math. Comput., 219, 15, 8057-8077, (2013) · Zbl 1366.76050
[60] Tavelli, M.; Dumbser, M., A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes, Appl. Math. Comput., 234, 623-644, (2014) · Zbl 1298.76120
[61] Tavelli, M.; Dumbser, M., A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations, Appl. Math. Comput., 248, 70-92, (2014) · Zbl 1338.76068
[62] Cheung, S.; Chung, E.; Kim, H.; Qian, Y., Staggered discontinuous Galerkin methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 302, 251-266, (2015) · Zbl 1349.76189
[63] Dolejsi, V., Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows, Commun. Comput. Phys., 4, 231-274, (2008) · Zbl 1364.76085
[64] Dolejsi, V.; Feistauer, M., A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow, J. Comput. Phys., 198, 727-746, (2004) · Zbl 1116.76386
[65] Dolejsi, V.; Feistauer, M.; Hozman, J., Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes, Comput. Methods Appl. Mech. Eng., 196, 2813-2827, (2007) · Zbl 1121.76033
[66] Giraldo, F. X.; Restelli, M., High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model, Int. J. Numer. Methods Fluids, 63, 1077-1102, (2010) · Zbl 1267.76010
[67] Tumolo, G.; Bonaventura, L.; Restelli, M., A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations, J. Comput. Phys., 232, 46-67, (2013) · Zbl 1291.65305
[68] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for dynamics of free boundaries, J. Comput. Phys., 39, 201-225, (1981) · Zbl 0462.76020
[69] Casulli, V.; Cheng, R. T., Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluids, 15, 629-648, (1992) · Zbl 0762.76068
[70] Casulli, V., A semi-implicit finite difference method for non-hydrostatic free-surface flows, Int. J. Numer. Methods Fluids, 30, 425-440, (1999) · Zbl 0944.76050
[71] Casulli, V.; Walters, R. A., An unstructured grid, three-dimensional model based on the shallow water equations, Int. J. Numer. Methods Fluids, 32, 331-348, (2000) · Zbl 0965.76061
[72] Casulli, V., A high-resolution wetting and drying algorithm for free-surface hydrodynamics, Int. J. Numer. Methods Fluids, 60, 391-408, (2009) · Zbl 1161.76034
[73] Casulli, V., A semi-implicit numerical method for the free-surface Navier-Stokes equations, Int. J. Numer. Methods Fluids, 74, 605-622, (2014)
[74] Brugnano, L.; Casulli, V., Iterative solution of piecewise linear systems, SIAM J. Sci. Comput., 30, 463-472, (2007) · Zbl 1155.90457
[75] Brugnano, L.; Casulli, V., Iterative solution of piecewise linear systems and applications to flows in porous media, SIAM J. Sci. Comput., 31, 1858-1873, (2009) · Zbl 1190.90233
[76] Casulli, V.; Zanolli, P., A nested Newton-type algorithm for finite volume methods solving Richards’ equation in mixed form, SIAM J. Sci. Comput., 32, 2255-2273, (2009) · Zbl 1410.76209
[77] Casulli, V.; Zanolli, P., Iterative solutions of mildly nonlinear systems, J. Comput. Appl. Math., 236, 3937-3947, (2012) · Zbl 1251.65073
[78] Bermudez, A.; Dervieux, A.; Desideri, J.; Vazquez, M., Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Comput. Methods Appl. Mech. Eng., 155, 49-72, (1998) · Zbl 0961.76047
[79] Bermúdez, A.; Ferrín, J.; Saavedra, L.; Vázquez-Cendón, M., A projection hybrid finite volume/element method for low-Mach number flows, J. Comput. Phys., 271, 360-378, (2014) · Zbl 1349.76305
[80] Toro, E. F.; Hidalgo, A.; Dumbser, M., FORCE schemes on unstructured meshes I: conservative hyperbolic systems, J. Comput. Phys., 228, 3368-3389, (2009) · Zbl 1168.65377
[81] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463, (1998) · Zbl 0927.65118
[82] Cockburn, B.; Shu, C. W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 173-261, (2001) · Zbl 1065.76135
[83] Yan, J.; Shu, C., A local discontinuous Galerkin method for KdV-type equations, SIAM J. Numer. Anal., 40, 769-791, (2002) · Zbl 1021.65050
[84] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267-279, (1961)
[85] Chatzi, V.; Preparata, F., Using pyramids in mixed meshes - point placement and basis functions, (2000), Brown University Providence
[86] Luo, H.; Baum, J.; Löhner, R., A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, J. Comput. Phys., 227, 8875-8893, (2008) · Zbl 1391.76350
[87] Castro, M. J.; Gallardo, J. M.; Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems, Math. Comput., 75, 1103-1134, (2006) · Zbl 1096.65082
[88] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321, (2006) · Zbl 1130.65089
[89] Brown, D. L.; Cortez, R.; Minion, M. L., Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 168, 464-499, (2001) · Zbl 1153.76339
[90] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, J. Comput. Phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[91] Balsara, D.; Meyer, C.; Dumbser, M.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - speed comparisons with Runge-Kutta methods, J. Comput. Phys., 235, 934-969, (2013) · Zbl 1291.76237
[92] Dutt, A.; Greengard, L.; Rokhlin, V., Spectral deferred correction methods for ordinary differential equations, BIT Numer. Math., 40, 2, 241-266, (2000) · Zbl 0959.65084
[93] Kadioglu, S.; Klein, R.; Minion, M., A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics, J. Comput. Phys., 227, 3, 2012-2043, (2008) · Zbl 1146.76035
[94] Casulli, V.; Cattani, E., Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow, Comput. Math. Appl., 27, 99-112, (1994) · Zbl 0796.76052
[95] Ghia, U.; Ghia, K. N.; Shin, C. T., High-re solutions for incompressible flow using Navier-Stokes equations and multigrid method, J. Comput. Phys., 48, 387-411, (1982) · Zbl 0511.76031
[96] Erturk, E.; Corke, T.; Gokcol, C., Numerical solutions of 2D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer. Methods Fluids, 48, 747-774, (2005) · Zbl 1071.76038
[97] Albensoeder, S.; Kuhlmann, H., Accurate three-dimensional lid-driven cavity flow, J. Comput. Phys., 206, 536-558, (2005) · Zbl 1121.76366
[98] Arnold, V., Sur la topologie des écoulements stationnaires des fluides parfaits, C. R. Hebd. Séances Acad. Sci., 261, 17-20, (1965) · Zbl 0145.22203
[99] Childress, S., New solutions of the kinematic dynamo problem, J. Math. Phys., 11, 3063-3076, (1970)
[100] Dombre, T.; Frisch, U.; Greene, J. M.; Hénon, M.; Mehr, A.; Soward, A. M., Chaotic streamlines in the ABC flows, J. Fluid Mech., 167, 353-391, (1986) · Zbl 0622.76027
[101] Podvigina, O. M., Spatially-periodic steady solutions to the three-dimensional Navier-Stokes equation with the abc-force, Physica D: Nonlinear Phenomena, 128, 24, 250-272, (1999) · Zbl 0943.76019
[102] Podvigina, O.; Ashwin, P.; Hawker, D., Modelling instability of flow using a mode interaction between steady and Hopf bifurcations with rotational symmetries of the cube, Physica D: Nonlinear Phenomena, 215, 1, 62-79, (2006) · Zbl 1091.35520
[103] Ershkov, S., Non-stationary helical flows for incompressible 3D Navier-Stokes equations, Appl. Math. Comput., 274, 611-614, (2015)
[104] Fambri, F.; Dumbser, M., Spectral semi-implicit space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids, Appl. Numer. Math. submitted for publication · Zbl 1432.76157
[105] Colomes, O.; Badia, S.; Codina, R.; Principe, J., Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows, Comput. Methods Appl. Mech. Eng., 285, 32-63, (2015)
[106] Womersley, J., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol., 127, 553-563, (1955)
[107] Fambri, F.; Dumbser, M.; Casulli, V., An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels, Int. J. Numer. Methods Biomed. Eng., 30, 1170-1198, (2014)
[108] Blasius, H., Grenzschichten in flüssigkeiten mit kleiner reibung, Z. Math. Phys., 56, 1-37, (1908) · JFM 39.0803.02
[109] Erturk, E., Numerical solutions of 2d steady incompressible flow over a backward-facing step, part I: high Reynolds number solutions, Comput. Fluids, 37, 633-655, (2008) · Zbl 1237.76102
[110] Casulli, V.; Greenspan, D., Pressure method for the numerical solution of transient, compressible fluid flows, Int. J. Numer. Methods Fluids, 4, 11, 1001-1012, (1984) · Zbl 0549.76050
[111] Klein, R.; Botta, N.; Schneider, T.; Munz, C.; Roller, S.; Meister, A.; Hoffmann, L.; Sonar, T., Asymptotic adaptive methods for multi-scale problems in fluid mechanics, J. Eng. Math., 39, 261-343, (2001) · Zbl 1015.76071
[112] Munz, C.; Klein, R.; Roller, S.; Geratz, K., The extension of incompressible flow solvers to the weakly compressible regime, Comput. Fluids, 32, 173-196, (2003) · Zbl 1042.76045
[113] Klein, R., Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one-dimensional flow, J. Comput. Phys., 121, 213-237, (1995) · Zbl 0842.76053
[114] Meister, A., Asymptotic single and multiple scale expansions in the low Mach number limit, SIAM J. Appl. Math., 60, 1, 256-271, (1999) · Zbl 0941.35052
[115] Park, J.; Munz, C., Multiple pressure variables methods for fluid flow at all Mach numbers, Int. J. Numer. Methods Fluids, 49, 905-931, (2005) · Zbl 1170.76342
[116] Cordier, F.; Degond, P.; Kumbaro, A., An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations, J. Comput. Phys., 231, 5685-5704, (2012) · Zbl 1277.76090
[117] Dumbser, M.; Iben, U.; Ioriatti, M., An efficient semi-implicit finite volume method for axially symmetric compressible flows in compliant tubes, Appl. Numer. Math., 89, 24-44, (2015) · Zbl 1326.76070
[118] Dumbser, M.; Casulli, V., A conservative, weakly nonlinear semi-implicit finite volume method for the compressible Navier-Stokes equations with general equation of state, Appl. Math. Comput., 272, 479-497, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.