×

Mass conservation of the unified continuous and discontinuous element-based Galerkin methods on dynamically adaptive grids with application to atmospheric simulations. (English) Zbl 1349.76227

Summary: We perform a comparison of mass conservation properties of the continuous (CG) and discontinuous (DG) Galerkin methods on non-conforming, dynamically adaptive meshes for two atmospheric test cases. The two methods are implemented in a unified way which allows for a direct comparison of the non-conforming edge treatment. We outline the implementation details of the non-conforming direct stiffness summation algorithm for the CG method and show that the mass conservation error is similar to the DG method. Both methods conserve to machine precision, regardless of the presence of the non-conforming edges. For lower order polynomials the CG method requires additional stabilization to run for very long simulation times. We addressed this issue by using filters and/or additional artificial viscosity. The mathematical proof of mass conservation for CG with non-conforming meshes is presented in .

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76Nxx Compressible fluids and gas dynamics
86A10 Meteorology and atmospheric physics

Software:

GASpAR
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kopera, M. A.; Giraldo, F. X., Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations, J. Comput. Phys., 275, 92-117, (2014) · Zbl 1349.76226
[2] Maday, Y.; Mavriplis, C.; Patera, A. T., Nonconforming mortar element methods: application to spectral discretizations, (1988), Institute for Computer Applications in Science and Engineering, NASA Langley Research Center
[3] Mavriplis, C., Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques, (1989), Massachusetts Institute of Technology, Ph.D. thesis
[4] Henderson, R. D.; Karniadakis, G. E., Unstructured spectral element methods for simulation of turbulent flows, J. Comput. Phys., 122, 2, 191-217, (1995) · Zbl 0840.76070
[5] Henderson, R., Dynamic refinement algorithms for spectral element methods, Comput. Methods Appl. Math., 175, 3, 395-411, (1999) · Zbl 0927.76077
[6] Fischer, P. F.; Kruse, G. W.; Loth, F., Spectral element methods for transitional flows in complex geometries, J. Sci. Comput., 17, 1-4, 81-98, (2002) · Zbl 1001.76075
[7] Sert, C.; Beskok, A., Spectral element formulations on non-conforming grids: a comparative study of pointwise matching and integral projection methods, J. Comput. Phys., 211, 1, 300-325, (2006) · Zbl 1120.65338
[8] Rosenberg, D.; Fournier, A.; Fischer, P.; Pouquet, A., Geophysical-astrophysical spectral-element adaptive refinement (gaspar): object-oriented h-adaptive fluid dynamics simulation, J. Comput. Phys., 215, 1, 59-80, (2006) · Zbl 1140.86300
[9] St-Cyr, A.; Jablonowski, C.; Dennis, J. M.; Tufo, H. M.; Thomas, S. J., A comparison of two shallow-water models with nonconforming adaptive grids, Mon. Weather Rev., 136, 6, 1898-1922, (2008)
[10] Hughes, T. J.R.; Engel, G.; Mazzei, L.; Larson, M. G., The continuous Galerkin method is locally conservative, J. Comput. Phys., 163, 2, 467-488, (2000) · Zbl 0969.65104
[11] Hughes, T. J.R.; Engel, G.; Mazzei, L.; Larson, M. G., A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency, (Discontinuous Galerkin Methods, (2000), Springer), 135-146 · Zbl 0946.65109
[12] Taylor, M. A.; Edwards, J.; Thomas, S.; Nair, R., A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid, J. Phys. Conf. Ser., 78, 012074, (2007)
[13] Taylor, M. A.; Fournier, A., A compatible and conservative spectral element method on unstructured grids, J. Comput. Phys., 229, 17, 5879-5895, (2010) · Zbl 1425.76177
[14] Kelly, J. F.; Giraldo, F. X., Continuous and discontinuous Galerkin methods for a scalable 3D nonhydrostatic atmospheric model: limited area mode, J. Comput. Phys., 231, 2, 7988-8008, (2012) · Zbl 1284.65134
[15] Giraldo, F. X.; Kelly, J. F.; Constantinescu, E. M., Implicit-explicit formulations for a 3D nonhydrostatic unified model of the atmosphere (NUMA), SIAM J. Sci. Comput., 35, 5, B1162-B1194, (2013) · Zbl 1280.86008
[16] Giraldo, F. X.; Restelli, M., A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in non-hydrostatic mesoscale atmospheric modeling: equation sets and test cases, J. Comput. Phys., 227, 1, 3849-3877, (2008) · Zbl 1194.76189
[17] Yu, M.; Giraldo, F. X.; Kim, J.; Wang, Z. J., Localized artificial viscosity stabilization of discontinuous Galerkin methods for non-hydrostatic atmospheric modeling, J. Comput. Phys., (2015), submitted for publication
[18] Marras, S.; Nazarov, M.; Giraldo, F. X., A conservative, consistent, and grid adaptive stabilized spectral element method based on a dynamic LES model for the compressible Euler equations, J. Comput. Phys., (2015), in review
[19] Giraldo, F. X., Continuous and discontinuous Galerkin methods for atmospheric modeling, (Proceedings of the Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling Seminar, ECMWF, (2013)), 167-183
[20] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, USSR Comput. Math. Math. Phys., 1, 267-279, (1961)
[21] Giraldo, F. X.; Rosmond, T. E., A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: dynamical core tests, Mon. Weather Rev., 132, 1, 133-153, (2004)
[22] Fournier, A.; Rosenberg, D.; Pouquet, A., Dynamically adaptive spectral-element simulations of 2D incompressible Navier-Stokes vortex decays, Geophys. Astrophys. Fluid Dyn., 103, 2-3, 245-268, (2009)
[23] Higham, N. J., The accuracy of floating point summation, SIAM J. Sci. Comput., 14, 4, 783-799, (1993) · Zbl 0788.65053
[24] Straka, J.; Wilhelmson, R. B.; Anderson, J. R.; Droegemeier, K. K., Numerical solutions of a non-linear density current: a benchmark solution and comparisons, Int. J. Numer. Methods Fluids, 17, 1-22, (1993)
[25] Giraldo, F. X., The Lagrange-Galerkin spectral element method on unstructured quadrilateral grids, J. Comput. Phys., 147, 1, 114-146, (1998) · Zbl 0920.65070
[26] Mueller, A.; Behrens, J.; Giraldo, F. X.; Wirth, V., An adaptive discontinuous Galerkin method for modeling atmospheric convection, J. Comput. Phys., 235, 1, 371-393, (2012)
[27] Boyd, J. P., The erfc-log filter and the asymptotics of the Euler and vandeven sequence accelerations, (Ilin, A. V.; Scott, L., Proceedings of the Third International Conference on Spectral and High Order Methods, Houston, Texas, (1996)), 267-276
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.