×

zbMATH — the first resource for mathematics

Isogeometric analysis of Lagrangian hydrodynamics. (English) Zbl 1349.76178
Summary: Isogeometric analysis of Lagrangian shock hydrodynamics is proposed. The Euler equations of compressible hydrodynamics in the weak form are discretized using Non-Uniform Rational B-Splines (NURBS) in space. The discretization has all the advantages of a higher-order method, with the additional benefits of exact symmetry preservation and better per-degree-of-freedom accuracy. An explicit, second-order accurate time integration procedure, which conserves total energy, is developed and employed to advance the equations in time. The performance of the method is examined on a set of standard 2D and 3D benchmark examples, where good quality of the computational results is attained.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Software:
ISOGAT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Computational Mechanics, 41, 371-378, (2008) · Zbl 1162.76355
[2] Akkerman, I.; Bazilevs, Y.; Kees, C. E.; Farthing, M. W., Isogeometric analysis of free-surface flow, Journal of Computational Physics, 230, 4137-4152, (2011) · Zbl 1343.76040
[3] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, Journal of Computational Physics, 229, 3402-3414, (2010) · Zbl 1290.76037
[4] Bazilevs, Y.; Calo, V. M.; Cottrel, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Computer Methods in Applied Mechanics and Engineering, 197, 173-201, (2007) · Zbl 1169.76352
[5] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Computer Methods in Applied Mechanics and Engineering, 199, 229-263, (2010) · Zbl 1227.74123
[6] Bazilevs, Y.; Beirao da Veiga, L.; Cottrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Mathematical Models and Methods in Applied Sciences, 16, 1031-1090, (2006) · Zbl 1103.65113
[7] Bazilevs, Y.; Hsu, Ming-Chen; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B.; Spielman, T., 3D simulation of wind turbine rotors at full scale. part I: geometry modeling and aerodynamics, International Journal for Numerical Methods in Fluids, 65, 207-235, (2011) · Zbl 1428.76086
[8] Bazilevs, Y.; Hsu, Ming-Chen; Kiendl, J.; Wüchner, R.; Bletzinger, Kai-Uwe, 3D simulation of wind turbine rotors at full scale. part II: fluid-structure interaction modeling with composite blades, International Journal for Numerical Methods in Fluids, 65, 236-253, (2011) · Zbl 1428.76087
[9] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), Wiley · Zbl 0959.74001
[10] Benson, D. J.; Bazilevs, Y.; De Luycker, E.; Hsu, M. C.; Scott, M.; Hughes, T. J.R.; Belytschko, T., A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM, International Journal for Numerical Methods in Engineering, 83, 765-785, (2010) · Zbl 1197.74177
[11] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: the Reissner-Mindlin shell, Computer Methods in Applied Mechanics and Engineering, 199, 276-289, (2010) · Zbl 1227.74107
[12] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., A large deformation, rotation-free, isogeometric shell, Computer Methods in Applied Mechanics and Engineering, 200, 1367-1378, (2011) · Zbl 1228.74077
[13] Benson, D. J., An efficient, accurate, and simple ALE method for nonlinear finite element programs, Computer Methods in Applied Mechanics and Engineering, 72, 305-350, (1989) · Zbl 0675.73037
[14] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Computer Methods in Applied Mechanics and Engineering, 99, 235-394, (1992) · Zbl 0763.73052
[15] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32, 199-259, (1982) · Zbl 0497.76041
[16] Caramana, E. J.; Shashkov, M. J.; Whalen, P. P., Formulations of artificial viscosity for multi-dimensional shock wave computations, Journal of Computational Physics, 144, 70-97, (1998) · Zbl 1392.76041
[17] Cirak, F.; Ortiz, M., Fully \(C^1\)-conforming subdivision elements for finite deformation thin shell analysis, International Journal of Numerical Methods in Engineering, 51, 813-833, (2001) · Zbl 1039.74045
[18] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin shell analysis, International Journal of Numerical Methods in Engineering, 47, 2039-2072, (2000) · Zbl 0983.74063
[19] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley Chichester · Zbl 1378.65009
[20] Cottrell, J. A.; Hughes, T. J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Computer Methods in Applied Mechanics and Engineering, 196, 4160-4183, (2007) · Zbl 1173.74407
[21] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Computer Methods in Applied Mechanics and Engineering, 195, 5257-5297, (2006) · Zbl 1119.74024
[22] M.G. Cox, The numerical evaluation of B-splines, Technical report, National Physics Laboratory DNAC 4, 1971.
[23] Beirao da Veiga, L.; Cho, D.; Sangalli, G., Anisotropic NURBS approximation in isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 209-212, 1-11, (2012) · Zbl 1243.65027
[24] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Computer Methods in Applied Mechanics and Engineering, 199, 264-275, (2010) · Zbl 1227.74125
[25] de Boor, C., On calculation with B-splines, Journal of Approximation Theory, 6, 50-62, (1972) · Zbl 0239.41006
[26] Dobrev, V. A.; Ellis, T. E.; Kolev, T. V.; Rieben, R. N., Curvilinear finite elements for Lagrangian hydrodynamics, International Journal for Numerical Methods in Fluids, 65, 1295-1310, (2011) · Zbl 1255.76075
[27] Dobrev, V. A.; Ellis, T. E.; Kolev, Tz. V.; Rieben, R. N., High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, Computer and Fluids, 197, (2012), Published online
[28] Dobrev, V.; Kolev, Tz.; Rieben, R., High-order curvilinear finite element methods for Lagrangian hydrodynamics, SIAM Journal on Scientific Computing, 34, B606-B641, (2012) · Zbl 1255.76076
[29] Farin, G. E., NURBS curves and surfaces: from projective geometry to practical use, (1995), A.K. Peters, Ltd. Natick, MA · Zbl 0848.68112
[30] Hughes, T. J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications Mineola, NY · Zbl 1191.74002
[31] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194, 4135-4195, (2005) · Zbl 1151.74419
[32] Hughes, T. J.R.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 199, 301-313, (2010) · Zbl 1227.65029
[33] Kiendl, J.; Bazilevs, Y.; Hsu, Ming-Chen; Wüchner, R.; Bletzinger, Kai-Uwe, The bending strip method for isogeometric analysis of Kirchhoff-love shell structures comprised of multiple patches, Computer Methods in Applied Mechanics and Engineering, 199, 2403-2416, (2010) · Zbl 1231.74482
[34] Margolin, L.; Shashkov, M., Using a curvilinear grid to construct symmetry-preserving discretizations for Lagrangian gas dynamics, Journal of Computational Physics, 149, 389-417, (1999) · Zbl 0936.76057
[35] Von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, Journal of Applied Physics, 21, 232-237, (1950) · Zbl 0037.12002
[36] Noh, W. F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, Journal of Computational Physics, 72, 78-120, (1987) · Zbl 0619.76091
[37] López Ortega, A.; Scovazzi, G., A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements, Journal of Computational Physics, 230, 6709-6741, (2011) · Zbl 1284.76255
[38] Piegl, L.; Tiller, W., The NURBS book (monographs in visual communication), (1997), Springer-Verlag New York
[39] Rogers, D. F., An introduction to NURBS with historical perspective, (2001), Academic Press San Diego, CA
[40] Scovazzi, G., Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach, Journal of Computational Physics, 231, 8029-8069, (2012)
[41] Scovazzi, G.; Christon, M. A.; Hughes, T. J.R.; Shadid, J. N., Stabilized shock hydrodynamics: I.A. Lagrangian method, Computer Methods in Applied Mechanics and Engineering,, 196, 923-966, (2007) · Zbl 1120.76334
[42] Scovazzi, G.; Christon, M. A.; Hughes, T. J.R.; Shadid, J. N., Stabilized shock hydrodynamics: II. design and physical interpretation of the SUPG operator for Lagrangian computations, Computer Methods in Applied Mechanics and Engineering,, 196, 967-978, (2007) · Zbl 1120.76332
[43] Scovazzi, G.; Love, E.; Shashkov, M. J., Multiscale Lagrangian shock hydrodynamics on Q1/P0 finite elements: theoretical framework and two-dimensional computations, Computer Methods in Applied Mechanics and Engineering, 197, 1056-1079, (2008) · Zbl 1169.76396
[44] Scovazzi, G.; López Ortega, A., Algebraic flux correction and geometric conservation in arbitrary Lagrangian-Eulerian computations, (Lohner, R.; Kuzmin, D.; Turek, S., Flux Corrected Transport, (2012), Springer-Verlag)
[45] Scovazzi, G.; Shadid, J. N.; Love, E.; Rider, W. J., A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics, Computer Methods in Applied Mechanics and Engineering, 199, 3059-3100, (2010) · Zbl 1225.76204
[46] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-NURCCS, ACM Transactions on Graphics, 22, 3, 477-484, (2003)
[47] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering,, 89, 141-219, (1991)
[48] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, International Journal of Numerical Methods in Fluids, 43, 555-575, (2003) · Zbl 1032.76605
[49] Tezduyar, T. E., Finite element methods for fluid dynamics with moving boundaries and interfaces, (Stein, E.; De Borst, R.; Hughes, T. J.R., Encyclopedia of Computational Mechanics, Fluids, vol. 3, (2004), John Wiley & Sons), chapter 17
[50] Wang, D.; Xuan, J., An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions, Computer Methods in Applied Mechanics and Engineering, 199, 2425-2436, (2010) · Zbl 1231.74498
[51] Wang, W.; Zhang, Y.; Xu, G.; Hughes, T. J.R., Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline, Computational Mechanics, (2012), Published online · Zbl 1312.65197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.