×

Higher-order conservative interpolation between control-volume meshes: application to advection and multiphase flow problems with dynamic mesh adaptivity. (English) Zbl 1349.76164

Summary: A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76T30 Three or more component flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Peraire, J.; Peiró, J.; Morgan, K., Adaptive remeshing for three-dimensional compressible flow computations, J. Comput. Phys., 103, 2, 269-285 (1992) · Zbl 0764.76037
[2] Pain, C. C.; Umpleby, A. P.; de Oliveira, C. R.E.; Goddard, A. J.H., Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Eng., 190, 29-30, 3771-3796 (2001) · Zbl 1008.76041
[3] George, P. L.; Borouchaki, H., Delaunay Triangulation and Meshing: Application to Finite Elements (1998), Hermes: Hermes Paris · Zbl 0908.65143
[4] Pavlidis, D.; Xie, Z.; Percival, J. R.; Gomes, J. L.M. A.; Pain, C. C.; Matar, O. K., Two- and three-phase horizontal slug flow simulations using an interface-capturing compositional approach, A Collection of Papers in Honor of Professor G. Hewitt on the Occasion of his 80th Birthday. A Collection of Papers in Honor of Professor G. Hewitt on the Occasion of his 80th Birthday, Int. J. Multiph. Flow, 67, Supplement, 85-91 (2014)
[5] Percival, J. R.; Pavlidis, D.; Xie, Z.; Gomes, J. L.M. A.; Sakai, M.; Shigeto, Y.; Takahashi, H.; Matar, O. K.; Pain, C. C., Control volume finite element modelling of segregation of sand and granular flows in fluidized beds, A Collection of Papers in Honor of Professor G. Hewitt on the Occasion of his 80th Birthday. A Collection of Papers in Honor of Professor G. Hewitt on the Occasion of his 80th Birthday, Int. J. Multiph. Flow, 67, Supplement, 191-199 (2014)
[6] Pavlidis, D.; Gomes, J. L.M. A.; Xie, Z.; Percival, J. R.; Pain, C. C.; Matar, O. K., Compressive advection and multi-component methods for interface-capturing, Int. J. Numer. Methods Fluids, 80, 4, 256-282 (2016), fld. 4078
[7] Jackson, M. D.; Percival, J. R.; Mostaghimi, P.; Tollit, B. S.; Pavlidis, D.; Pain, C. C.; Gomes, J. L.M. A.; El-Sheikh, A. H.; Salinas, P.; Muggeridge, A. H.; Blunt, M. J., Reservoir modeling for flow simulation by use of surfaces, adaptive unstructured meshes, and an overlapping-control-volume finite-element method, SPE Reserv. Eval. Eng., 18, 115-132 (2015)
[8] Mostaghimi, P.; Percival, J. R.; Pavlidis, D.; Ferrier, R. J.; Gomes, J. L.M. A.; Gorman, G. J.; Jackson, M. D.; Neethling, S. J.; Pain, C. C., Anisotropic mesh adaptivity and control volume finite element methods for numerical simulation of multiphase flow in porous media, Math. Geosci., 47, 4, 417-440 (2015) · Zbl 1323.76112
[9] Salinas, P.; Percival, J. R.; Pavlidis, D.; Xie, Z.; Gomes, J. L.M. A.; Pain, C. C.; Jackson, M. D., A discontinuous overlapping control volume finite element method for multi-phase porous media flow using dynamic unstructured mesh optimization, (Society of Petroleum Engineers. Society of Petroleum Engineers, SPE-173279-MS (2015)), 1511-1528
[10] Su, K.; Latham, J. P.; Pavlidis, D.; Xiang, J.; Fang, F.; Mostaghimi, P.; Percival, J. R.; Pain, C. C.; Jackson, M. D., Multiphase flow simulation through porous media with explicitly resolved fractures, Geofluids, 15, 592-607 (2015)
[11] Farrell, P. E.; Maddison, J. R., Conservative interpolation between volume meshes by local Galerkin projection, Comput. Methods Appl. Mech. Eng., 200, 1-4, 89-100 (2011) · Zbl 1225.76193
[12] Farrell, P. E.; Piggott, M. D.; Pain, C. C.; Gorman, G. J.; Wilson, C. R., Conservative interpolation between unstructured meshes via supermesh construction, Comput. Methods Appl. Mech. Eng., 198, 33-36, 2632-2642 (2009) · Zbl 1228.76105
[13] Löhner, R., Robust, vectorized search algorithms for interpolation on unstructured grids, J. Comput. Phys., 118, 2, 380-387 (1995) · Zbl 0826.65007
[14] Davies, D. R.; Davies, J. H.; Hassan, O.; Morgan, K.; Nithiarasu, P., Investigations into the applicability of adaptive finite element methods to two-dimensional infinite Prandtl number thermal and thermochemical convection, Geochem. Geophys. Geosyst., 8, 5 (2007)
[15] Clément, P., Approximation by finite element functions using local regularization, Rev. Fr. Autom. Inform. Rech. Opér., Anal. Numér., 9, 2, 77-84 (1975) · Zbl 0368.65008
[16] Carstensen, C., Clément interpolation and its role in adaptive finite element error control, (Partial Differential Equations and Functional Analysis (2006), Springer), 27-43 · Zbl 1106.65328
[17] Jiao, X.; Heath, M. T., Common-refinement-based data transfer between non-matching meshes in multiphysics simulations, Int. J. Numer. Methods Eng., 61, 14, 2402-2427 (2004) · Zbl 1075.74711
[18] Grandy, J., Conservative remapping and region overlays by intersecting arbitrary polyhedra, J. Comput. Phys., 148, 2, 433-466 (1999) · Zbl 0932.76073
[19] Farrell, P. E., Galerkin projection of discrete fields via supermesh construction (2009), Imperial College London, PhD thesis
[20] Buckley, S. E.; Leverett, M. C., Mechanism of fluid displacement in sands, Trans. AIME, 146, 01, 107-116 (1942)
[21] Saffman, P. G.; Taylor, G., The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 245, 312-329 (1958), The Royal Society · Zbl 0086.41603
[22] Homsy, G. M., Viscous fingering in porous media, Annu. Rev. Fluid Mech., 19, 1, 271-311 (1987)
[23] Riaz, A.; Tchelepi, H. A., Numerical simulation of immiscible two-phase flow in porous media, Phys. Fluids, 18, 1, Article 014104 pp. (2006)
[24] Jaure, S.; Moncorge, A.; de Loubens, R., Reservoir simulation prototyping platform for high performance computing, (SPE Large Scale Computing and Big Data Challenges in Reservoir Simulation Conference and Exhibition (2014), Society of Petroleum Engineers)
[25] Mostaghimi, P.; Kamali, F.; Jackson, M. D.; Muggeridge, A. H.; Pain, C. C., A dynamic mesh approach for simulation of immiscible viscous fingering, (SPE Reservoir Simulation Symposium (2015), Society of Petroleum Engineers)
[26] Yortsos, Y. C.; Hickernell, F. J., Linear stability of immiscible displacement in porous media, SIAM J. Appl. Math., 49, 3, 730-748 (1989) · Zbl 0669.76124
[27] Yortsos, Y. C.; Huang, A. B., Linear-stability analysis of immiscible displacement: Part 1-simple basic flow profiles, SPE Reserv. Eng., 1, 4, 378-390 (1986)
[28] Chuoke, R. L.; Van Meurs, P.; van der Poel, C., The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media, (Society of Petroleum Engineers. Society of Petroleum Engineers, SPE-1141-G (1959))
[29] Riaz, A.; Tchelepi, H. A., Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation, Phys. Fluids, 16, 12, 4727-4737 (2004) · Zbl 1187.76445
[30] Brooks, R. H.; Corey, A. T., Hydraulic properties of porous media, (Hydrology Papers, No. 3 (1964), Colorado State University: Colorado State University Collins, Colo)
[31] Apel, Th.; Berzins, M.; Jimack, P. K.; Kunert, G.; Plaks, A.; Tsukerman, I.; Walkley, M., Mesh Shape and Anisotropic Elements: Theory and Practice (2000) · Zbl 0959.65128
[32] Tsukerman, Igor, Approximation of conservative fields and the element ‘edge shape matrix’, IEEE Trans. Magn., 34, 5, 3248-3251 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.