×

Efficient construction of unified continuous and discontinuous Galerkin formulations for the 3D Euler equations. (English) Zbl 1349.76162

Summary: A unified approach for the numerical solution of the 3D hyperbolic Euler equations using high order methods, namely continuous Galerkin (CG) and discontinuous Galerkin (DG) methods, is presented. First, we examine how classical CG that uses a global storage scheme can be constructed within the DG framework using constraint imposition techniques commonly used in the finite element literature. Then, we implement and test a simplified version in the Non-hydrostatic Unified Model of the Atmosphere (NUMA) for the case of explicit time integration and a diagonal mass matrix. Constructing CG within the DG framework allows CG to benefit from the desirable properties of DG such as, easier \(hp\)-refinement, better stability etc. Moreover, this representation allows for regional mixing of CG and DG depending on the flow regime in an area. The different flavors of CG and DG in the unified implementation are then tested for accuracy and performance using a suite of benchmark problems representative of cloud-resolving scale, meso-scale and global-scale atmospheric dynamics. The value of our unified approach is that we are able to show how to carry both CG and DG methods within the same code and also offer a simple recipe for modifying an existing CG code to DG and vice versa.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q31 Euler equations
86A10 Meteorology and atmospheric physics

Software:

GASpAR
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arnold, D.; Brezzi, F.; Cockburn, B.; Marini, L., Unified analysis of discontinuous Galerkin methods for elliptic problems, J. Sci. Comput., 22/23, 25-45, (2005)
[2] Bagheri, B.; Scott, L. R.; Zhang, S., Implementing and using high-order finite element methods, Special issue selection of papers presented at ICOSAHOM’92, Finite Elem. Anal. Des., 16, 3, 175-189, (1994) · Zbl 0812.76042
[3] Bernardi, C.; Maday, Y.; Rapetti, F., Basics and some applications of the mortar element method, GAMM-Mitt., 28, 2, 97-123, (2005) · Zbl 1177.65178
[4] Boyd, J., The erfc-log filter and the asymptotics of the Euler and vandeven sequence accelerations, (Proceedings of the Third International Conference on Spectral and High Order Methods, Houst. J. Math., (1996)), 267-276
[5] Boyd, J., Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods, J. Comput. Phys., 143, 283-288, (1998) · Zbl 0920.65046
[6] Cangiani, A.; Chapman, J.; Georgoulis, E.; Jensen, M., On the stability of continuous-discontinuous Galerkin methods for advection-diffusion-reaction problems, J. Sci. Comput., 57, 2, 313-330, (2013) · Zbl 1282.65131
[7] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365, (2009) · Zbl 1205.65312
[8] Dawson, C.; Proft, J., Coupling of continuous and discontinuous Galerkin methods for transport problems, Comput. Methods Appl. Mech. Eng., 191, 29-30, 3213-3231, (2002) · Zbl 1101.76355
[9] Dongarra, J.; Strohmaier, E.; Simon, H.; Meuer, H., Top500.org, (2015)
[10] Felippa, C., Error analysis of penalty function techniques for constraint definition in linear algebraic systems, Int. J. Numer. Methods Eng., 11, 709-728, (1977) · Zbl 0362.65030
[11] Fischer, P.; Mullen, J., Filter-based stabilization of spectral element methods, C. R. Acad. Sci., Ser. 1 Math., 265-270, (2001) · Zbl 0990.76064
[12] Fournier, A.; Taylor, M.; Tribbia, J., The spectral element atmosphere model (SEAM): high-resolution parallel computation and localized resolution of regional dynamics, Mon. Weather Rev., 132, 3, 726-748, (Mar. 2004)
[13] Giraldo, F. X.; Kelly, J. F.; Constantinescu, E. M., Implicit explicit formulations of a three dimensional non-hydrostatic unified model of the atmosphere (numa), SIAM J. Sci. Comput., 35, 1162-1194, (2013) · Zbl 1280.86008
[14] Giraldo, F. X.; Restelli, M., A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases, J. Comput. Phys., 227, 3849-3877, (2008) · Zbl 1194.76189
[15] Giraldo, F. X.; Restelli, M., High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model, Int. J. Numer. Methods Fluids, 63, 1077-1102, (2010) · Zbl 1267.76010
[16] Giraldo, F. X.; Restelli, M.; Laeuter, M., Semi-implicit formulations of the Navier-Stokes equations: application to nonhydrostatic atmospheric modeling, SIAM J. Sci. Comput., 32, 6, 3394-3425, (2010) · Zbl 1237.76153
[17] Giraldo, F. X.; Rosmond, T. E., A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: dynamical core tests, Mon. Weather Rev., 132, 1, 133-153, (Jan. 2004)
[18] Hestenes, M., Multiplier and gradient methods, J. Optim. Theory Appl., 4, 5, 303-320, (1969) · Zbl 0174.20705
[19] Hindenlang, F.; Gassner, G. J.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids, 61, 86-93, (2012) · Zbl 1365.76117
[20] Jablonowski, C.; Williamson, D., The pros and cons of diffusion, filters and fixers in atmospheric general circulation models, (Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering, vol. 80, (2011)), 381-482
[21] Kelly, J. F.; Giraldo, F. X., Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited area mode, J. Comput. Phys., 231, 7988-8008, (2012) · Zbl 1284.65134
[22] Kirby, R.; Knepley, M.; Scott, L. R., Evaluation of the action of finite element operators, (2004), Tech. rep.
[23] Kirby, R.; Sherwin, S.; Cockburn, B., To cg or to hdg: a comparative study, J. Sci. Comput., 51, 1, 183-212, (2012) · Zbl 1244.65174
[24] Klöckner, A.; Warburton, T.; Bridge, J.; Hesthaven, J., Nodal discontinuous Galerkin methods on graphics processors, J. Comput. Phys., 228, 21, 7863-7882, (2009) · Zbl 1175.65111
[25] Kopera, M. A.; Giraldo, F. X., Mass conservation of unified continuous and discontinuous element-based Galerkin methods on dynamically adaptive grids with application to atmospheric simulations, J. Comput. Phys., 297, 90-103, (2015) · Zbl 1349.76227
[26] Lions, J., Problemes aux limites non homogenesa donées irrégulieres: une méthode d’approximation, (Numerical Analysis of Partial Differential Equations, CIME 2 Ciclo, Ispra, 1967, (1968)), 283-292
[27] Marras, S.; Kelly, J.; Giraldo, F.; Vazquez, M., Variational multiscale stabilization of high-order spectral elements for the advection-diffusion equation, J. Comput. Phys., 231, 7187-7213, (2012) · Zbl 1284.65119
[28] Mavriplis, C., Adaptive mesh strategies for the spectral element method, Comput. Methods Appl. Mech. Eng., 116, 1-4, 77-86, (1994) · Zbl 0826.76070
[29] Müller, A.; Kopera, M.; Marras, S.; Wilcox, L.; Isaac, T.; Giraldo, F., Strong scaling for numerical weather prediction at petascale with the atmospheric model numa, (30th IEEE International Parallel and Distributed Processing Symposium, (2016))
[30] Nair, R.; Choi, H.; Tufo, H., Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core, Comput. Fluids, 38, 309-319, (2009) · Zbl 1237.76129
[31] Nguyen, N.; Peraire, J., Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics, J. Comput. Phys., 231, 5955-5988, (2012) · Zbl 1277.65082
[32] Nguyen, N.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations, J. Comput. Phys., 228, 23, 8841-8855, (2009) · Zbl 1177.65150
[33] NOAA, High performance computing plan 2015-2020, 1-11, (2015), National Oceanic and Atmospheric Administration
[34] Paz, M.; Leigh, W., Static condensation and substructuring, (Integrated Matrix Analysis of Structures, (2001), Springer), 239-260
[35] Rivière, B., Discontinuous Galerkin methods for solving elliptic and parabolic equations, (2008), Society for Industrial and Applied Mathematics · Zbl 1153.65112
[36] Rosenberg, D.; Fournier, A.; Fischer, P.; Pouquet, A., Geophysical astrophysical spectral-element adaptive refinement (gaspar): object-oriented h-adaptive fluid dynamics simulation, J. Comput. Phys., 215, 1, 59-80, (2006) · Zbl 1140.86300
[37] Straka, J.; Wilhelmson, R.; Wicker, L.; Anderson, J.; Doegemeier, K., Numerical solutions of a nonlinear density current: a benchmark solution and comparison, Int. J. Numer. Methods Fluids, 17, 1-22, (1993)
[38] Tomita, H.; Satoh, M., A new dynamical framework of nonhydrostatic global model using the icosahedral grid, Fluid Dyn. Res., 34, 357-400, (2005) · Zbl 1060.76661
[39] Wilcox, L.; Giraldo, F. X.; Campbell, T.; Klockner, A.; Warburton, T.; Whitcomb, T., NPS-NRL-Rice-UIUC collaboration on navy atmosphere-Ocean coupled models on many-core computer architectures annual report, 1-19, (2014)
[40] Yakovlev, S.; Moxey, D.; Kirby, R. M.; Sherwin, S. J., To cg or to hdg: a comparative study in 3d, J. Sci. Comput., 67, 1, 192-220, (2015) · Zbl 1339.65225
[41] Zienkiewicz, O. C., Displacement and equilibrium models in the finite element method by B. fraeijs de veubeke, chapter 9, pages 145-197 of stress analysis, edited by O.C. Zienkiewicz and G.S. holister, published by John wiley & sons, 1965, Int. J. Numer. Methods Eng., 52, 3, 287-342, (2001)
[42] Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M., Reduced integration technique in general analysis of plates and shells, Int. J. Numer. Methods Eng., 3, 2, 275-290, (1971) · Zbl 0253.73048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.