zbMATH — the first resource for mathematics

Modelling volumetric growth in a thick walled fibre reinforced artery. (English) Zbl 1349.74260
Summary: A novel framework for simulating growth and remodelling (G&R) of a fibre-reinforced artery, including volumetric adaption, is proposed. We show how to implement this model into a finite element framework and propose and examine two underlying assumptions for modelling growth, namely constant individual density (CID) or adaptive individual density (AID). Moreover, we formulate a novel approach which utilises a combination of both AID and CID to simulate volumetric G&R for a tissue composed of several different constituents. We consider a special case of the G&R of an artery subjected to prescribed elastin degradation and we theorise on the assumptions and suitability of CID, AID and the mixed approach for modelling arterial biology. For simulating the volumetric changes that occur during aneurysm enlargement, we observe that it is advantageous to describe the growth of collagen using CID whilst it is preferable to model the atrophy of elastin using AID.

74L15 Biomechanical solid mechanics
74A40 Random materials and composite materials
74E10 Anisotropy in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J. D., Molecular biology of the cell, (1994), Garland Publishing New York
[2] Aparício, P.; Mandaltsi, A.; Boamah, J.; Chen, H.; Selimovic, A.; Bratby, M.; Uberoi, R.; Ventikos, Y.; Watton, P. N., Modelling the influence of endothelial heterogeneity on the progression of arterial disease: application to abdominal aortic aneurysm evolution, Int. J. Numer. Meth. Biomed. Eng., 30, 563-586, (2014)
[3] Baek, S.; Rajagopal, K. R.; Humphrey, J. D., A theoretical model of enlarging intracranial fusiform aneurysms, J. Biomech. Eng., 128, 142-149, (2006)
[4] Campa, J. S.; Greenhalgh, R. M.; Powell, J. T., Elastin degradation in abdominal aortic aneurysms, Atherosclerosis, 65, 13-21, (1987)
[5] Epstein, M.; Maugin, G. A., Thermomechanics of volumetric growth in uniform bodies, Int. J. Plast., 16, 951-978, (2000) · Zbl 0979.74006
[6] Eriksson, T.; Kroon, M.; Holzapfel, G., Influence of medial collagen organization and axial in situ stretch on saccular cerebral aneurysm growth, J. Biomech. Eng., 131, 101010, (2009)
[7] Flory, P. J., Thermodynamic relations for highly elastic materials, Trans. Faraday Soc., 57, 829-838, (1961)
[8] Gleason, R. L.; Humphrey, J. D., A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch, Math. Med. Biol., 22, 347-369, (2005) · Zbl 1080.92024
[9] He, C. M.; Roach, M. R., The composition and mechanical properties of abdominal aortic aneurysms, J. Vasc. Surg., 20, 6-13, (1994)
[10] Holzapfel, G. A., Nonlinear solid mechanics. A continuum approach for engineering, (2000), John Wiley & Sons Chichester · Zbl 0980.74001
[11] Holzapfel, G. A., Structural and numerical models for the (visco)elastic response of arterial walls with residual stresses, (Holzapfel, G. A.; Ogden, R. W., Biomechanics of Soft Tissue in Cardiovascular Systems, CISM Courses and Lectures, vol. 441, (2003), Springer-Verlag Wien, New York) · Zbl 1151.74383
[12] Holzapfel, G. A.; Gasser, T. C.; Ogden, R. W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, 61, 1-48, (2000) · Zbl 1023.74033
[13] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of passive myocardiuma structurally based framework for material characterization, Philos. Trans. R. Soc. A, 367, 3445-3475, (2009) · Zbl 1185.74060
[14] Humphrey, J. D.; Holzapfel, G. A., Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms, J. Biomech., 45, 805-814, (2012)
[15] Kornet, L.; Bergen, A. A.B.; Hoeks, A. P.G.; Cleutjens, J. P.; Oostra, R. J.; Daemen, M. J.; van Soest, S.; Reneman, R. S., In patients with pseudoxanthoma elasticum a thicker and more elastic carotid artery is associated with elastin fragmentation and proteoglycans accumulation, Ultrasound Med. Biol., 30, 1041-1048, (2004)
[16] Lubarda, V. A.; Hoger, A., On the mechanics of solids with a growing mass, Int. J. Solids Struct., 39, 4627-4664, (2002) · Zbl 1045.74035
[17] Marsden, J. E.; Hughes, T. J.R., Mathematical foundations of elasticity, (1994), Dover New York
[18] Schlatmann, T. J.; Becker, A. E., Histologic changes in the normal aging aortaimplications for dissecting aortic aneurysm, Am. J. Cardiol., 39, 13-20, (1977)
[19] Schmid, H.; Grytsan, A.; Postan, E.; Watton, P. N.; Itskov, M., Influence of differing material properties in media and adventitia on arterial adaptionapplication to aneurysm formation and rupture, Comput. Methods Biomech. Biomed. Eng., 16, 33-53, (2013)
[20] Schmid, H.; Pauli, L.; Paulus, A.; Kuhl, E.; Itskov, M., Consistent formulation of the growth process at the kinematic and constitutive level for soft tissues composed of multiple constituents, Comput. Methods Biomech. Biomed. Eng., 15, 547-561, (2012)
[21] Schmid, H.; Watton, P. N.; Maurer, M. M.; Wimmer, J.; Winkler, P.; Wang, Y. K.; Röhrle, O.; Itskov, M., Impact of transmural heterogeneities on arterial adaptationapplication to aneurysm formation, Biomech. Model. Mechanobiol., 9, 295-315, (2010)
[22] Simo, J. C.; Taylor, R. L., Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Eng., 85, 273-310, (1991) · Zbl 0764.73104
[23] Taylor, R.L., 2011. FEAP - A Finite Element Analysis Program, Version 8.3 User Manual. University of California at Berkeley, Berkeley, CA.
[24] Valentín, A.; Humphrey, J. D.; Holzapfel, G. A., A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging, Ann. Biomed. Eng., 39, 2027-2045, (2011)
[25] Valentín, A.; Humphrey, J. D.; Holzapfel, G. A., A finite element based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification, Int. J. Numer. Methods Biomed. Eng., 29, 822-849, (2013)
[26] Wagenseil, J. E.; Mecham, R. P., Vascular extracellular matrix and arterial mechanics, Physiol. Rev., 89, 957-989, (2009)
[27] Watton, P. N.; Hill, N. A., Evolving mechanical properties of a model of abdominal aortic aneurysm, Biomech. Model. Mechanobiol., 8, 25-42, (2009)
[28] Watton, P. N.; Hill, N. A.; Heil, M., A mathematical model for the growth of the abdominal aortic aneurysm, Biomech. Model. Mechanobiol., 3, 98-113, (2004)
[29] Watton, P. N.; Raberger, N. B.; Holzapfel, G. A.; Ventikos, Y., Coupling the hemodynamic environment to the evolution of cerebral aneurysmscomputational framework and numerical examples, ASME J. Biomed. Eng., 131, 101003, (2009)
[30] Watton, P. N.; Ventikos, Y., Modelling evolution of saccular cerebral aneurysms, J. Strain Anal., 44, 375-389, (2009)
[31] Watton, P. N.; Selimovic, A.; Raberger, N. B.; Huang, P.; Holzapfel, G. A.; Ventikos, Y., Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms, Biomech. Model. Mechanobiol., 10, 109-132, (2011)
[32] Watton, P. N.; Ventikos, Y.; Holzapfel, G. A., Modelling cerebral aneurysm evolution, biomechanics and mechanobiology of aneurysms, (2011), Springer-Verlag Heidelberg
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.