×

Robust untangling of curvilinear meshes. (English) Zbl 1349.65670

Summary: This paper presents a technique that allows to untangle high-order/curvilinear meshes. The technique makes use of unconstrained optimization where element Jacobians are constrained to lie in a prescribed range through moving log-barriers. The untangling procedure starts from a possibly invalid curvilinear mesh and moves mesh vertices with the objective of producing elements that all have bounded Jacobians. Bounds on Jacobians are computed using the results of Johnen et al. (2012, 2013) [1,2]. The technique is applicable to any kind of polynomial element, for surface, volume, hybrid or boundary layer meshes. A series of examples demonstrate both the robustness and the efficiency of the technique. The final example, involving a time explicit computation, shows that it is possible to control the stable time step of the computation for curvilinear meshes through an alternative element deformation measure.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

Ipopt; L-BFGS; Gmsh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Johnen, A.; Remacle, J.-F.; Geuzaine, C., Geometrical validity of curvilinear finite elements, (Quadros, W. R., Proceedings of the 20th International Meshing Roundtable (2012), Springer: Springer Berlin, Heidelberg), 255-271
[2] Johnen, A.; Remacle, J.-F.; Geuzaine, C., Geometrical validity of curvilinear finite elements, Journal of Computational Physics, 233, 359-372 (2013)
[3] (Cockburn, B.; Karniadakis, G.; Shu, C.-W., Discontinuous Galerkin Methods. Discontinuous Galerkin Methods, Lecture Notes in Computational Science and Engineering, vol. 11 (2000), Springer: Springer Berlin) · Zbl 0989.76045
[4] Kroll, N.; Bieler, H.; Deconinck, H.; Couaillier, V.; Van Der Ven, H.; Sorensen, K., ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications: Results of a Collaborative Research Project Funded by the European Union, 2006-2009, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (2010), Springer
[5] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, Journal of Computational Physics, 138, 2, 251-285 (1997) · Zbl 0902.76056
[6] Bernard, P.-E.; Remacle, J.-F.; Legat, V., Boundary discretization for high-order discontinuous Galerkin computations of tidal flows around shallow water islands, International Journal for Numerical Methods in Fluids, 59, 5, 535-557 (2009) · Zbl 1394.76076
[7] Toulorge, T.; Desmet, W., Curved boundary treatments for the discontinuous Galerkin method applied to aeroacoustic propagation, AIAA Journal, 48, 2, 479-489 (2010)
[8] Remacle, J.-F.; Shephard, M. S., An algorithm oriented mesh database, International Journal for Numerical Methods in Engineering, 58, 2, 349-374 (2003) · Zbl 1035.68045
[9] Geuzaine, C.; Remacle, J.-F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[10] George, P. L.; Borouchaki, H., Construction de maillages de degré 2. Partie 3: Tétraèdre P2 (2011), INRIA: INRIA France, Tech. rep.
[11] Knupp, P. M., Winslow smoothing on two-dimensional unstructured meshes, Engineering with Computers, 15, 263-268 (1999) · Zbl 0958.65510
[12] Xie, Z. Q.; Sevilla, R.; Hassan, O.; Morgan, K., The generation of arbitrary order curved meshes for 3D finite element analysis, Computational Mechanics, 51, 3, 361-374 (2013) · Zbl 06149129
[13] Persson, P.-O.; Peraire, J., Curved mesh generation and mesh refinement using lagrangian solid mechanics, (Proceedings of the 47th AIAA Aerospace Sciences Meeting and Exhibit. Proceedings of the 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando (FL), USA, 5-9 January 2009 (2009))
[14] Li, X.; Shephard, M.; Beall, M., Accounting for curved domains in mesh adaptation, International Journal for Numerical Methods in Engineering, 58, 2, 247-276 (2003) · Zbl 1035.65021
[15] Luo, X.; Shephard, M.; OʼBara, R.; Nastasia, R.; Beall, M., Automatic p-version mesh generation for curved domains, Engineering with Computers, 20, 3, 273-285 (2004)
[16] Shephard, M.; Flaherty, J.; Jansen, K.; Li, X.; Luo, X.; Chevaugeon, N.; Remacle, J.; Beall, M.; OʼBara, R., Adaptive mesh generation for curved domains, Applied Numerical Mathematics, 52, 2, 251-271 (2005) · Zbl 1062.65020
[17] Freitag, L. A.; Plassmann, P., Local optimization-based simplicial mesh untangling and improvement, International Journal for Numerical Methods in Engineering, 49, 1, 109-125 (2000) · Zbl 0962.65098
[18] López, E. J.; Nigro, N. M.; Storti, M. A.; Toth, J. A., A minimal element distortion strategy for computational mesh dynamics, International Journal for Numerical Methods in Engineering, 69, 1898-1929 (2007) · Zbl 1194.76127
[19] López, E. J.; Nigro, N. M.; Storti, M. A., Simultaneous untangling and smoothing of moving grids, International Journal for Numerical Methods in Engineering, 76, 7, 994-1019 (2008) · Zbl 1195.74312
[20] Diachin, L.; Knupp, P.; Munson, T.; Shontz, S., A comparison of two optimization methods for mesh quality improvement, Engineering with Computers, 22, 2, 61-74 (2006)
[21] Freitag, L.; Knupp, P.; Munson, T.; Shontz, S., A comparison of optimization software for mesh shape-quality improvement problems (2002), Argonne National Lab.: Argonne National Lab. IL, USA, Tech. rep.
[22] Fiacco, A.; McCormick, G., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, vol. 4 (1990), Society for Industrial Mathematics · Zbl 0713.90043
[24] Liu, D.; Nocedal, J., On the limited memory BFGS method for large scale optimization, Mathematical Programming, 45, 1, 503-528 (1989) · Zbl 0696.90048
[25] Fletcher, R.; Reeves, C., Function minimization by conjugate gradients, Computer Journal, 7, 2, 149-154 (1964) · Zbl 0132.11701
[26] Hesthaven, J.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Texts in Applied Mathematics, vol. 54 (2008), Springer-Verlag New York Inc. · Zbl 1134.65068
[27] Vos, P.; Sherwin, S.; Kirby, R., From h to p efficiently: Implementing finite and spectral hp element methods to achieve optimal performance for low- and high-order discretisations, Journal of Computational Physics, 229, 13, 5161-5181 (2010) · Zbl 1194.65138
[28] Bernard, P.; Remacle, J.; Comblen, R.; Legat, V.; Hillewaert, K., High-order discontinuous Galerkin schemes on general 2D manifolds applied to the shallow water equations, Journal of Computational Physics, 228, 17, 6514-6535 (2009) · Zbl 1261.76026
[29] Remacle, J.-F.; Geuzaine, C.; Compère, G.; Marchandise, E., High-quality surface remeshing using harmonic maps, International Journal for Numerical Methods in Engineering, 83, 4, 403-425 (2010) · Zbl 1197.65194
[30] Toulorge, T.; Desmet, W., Spectral properties of discontinuous Galerkin space operators on curved meshes, (Hesthaven, J. S.; Rønquist, E. M.; Barth, T. J.; Griebel, M.; Keyes, D. E.; Nieminen, R. M.; Roose, D.; Schlick, T., Spectral and High Order Methods for Partial Differential Equations. Spectral and High Order Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 76 (2011), Springer: Springer Berlin, Heidelberg), 495-502 · Zbl 1216.65132
[31] Seny, B.; Lambrechts, J.; Comblen, R.; Legat, V.; Remacle, J.-F., Multirate time stepping for accelerating explicit discontinuous Galerkin computations with application to geophysical flows, International Journal for Numerical Methods in Fluids, 71, 1, 41-64 (2013) · Zbl 1431.65178
[32] Lambrechts, J.; Hanert, E.; Deleersnijder, E.; Bernard, P.-E.; Legat, V.; Remacle, J.-F.; Wolanski, E., A multiscale model of the whole Great Barrier Reef hydrodynamics, Estuarine, Coastal and Shelf Science, 79, 143-151 (2008)
[33] Botti, L., Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces, Journal of Scientific Computing, 52, 3, 675-703 (2012) · Zbl 1255.65222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.