zbMATH — the first resource for mathematics

On the role of polynomials in RBF-FD approximations. I: Interpolation and accuracy. (English) Zbl 1349.65642
Summary: Radial basis function-generated finite difference (RBF-FD) approximations generalize classical grid-based finite differences (FD) from lattice-based to scattered node layouts. This greatly increases the geometric flexibility of the discretizations and makes it easier to carry out local refinement in critical areas. Many different types of radial functions have been considered in this RBF-FD context. In this study, we find that (i) polyharmonic splines (PHS) in conjunction with supplementary polynomials provide a very simple way to defeat stagnation (also known as saturation) error and (ii) give particularly good accuracy for the tasks of interpolation and derivative approximations without the hassle of determining a shape parameter. In follow-up studies, we will focus on how to best use these hybrid RBF polynomial bases for FD approximations in the contexts of solving elliptic and hyperbolic type PDEs.

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
41A30 Approximation by other special function classes
Matlab; rbf_qr
Full Text: DOI
[1] Bayona, V.; Flyer, N.; Lucas, G. M.; Baumgaertner, A. J.G., A 3-D RBF-FD solver for modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1.0), Geosci. Model Dev., 8, 3007-3020, (2015)
[2] Bayona, V.; Kindelan, M., Propagation of premixed laminar flames in 3D narrow open ducts using RBF-generated finite differences, Combust. Theory Model., 17, 789-803, (2013)
[3] Bollig, E.; Flyer, N.; Erlebacher, G., Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple gpus, J. Comput. Phys., 231, 7133-7151, (2012)
[4] Buhmann, M. D., Radial basis functions: theory and implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12, (2003), Cambridge University Press Cambridge · Zbl 1038.41001
[5] Chandhini, G.; Sanyasiraju, Y. V.S. S., Local RBF-FD solutions for steady convection-diffusion problems, Int. J. Numer. Methods Eng., 72, 352-378, (2007) · Zbl 1194.76174
[6] Chinchapatnam, P. P.; Djidjeli, K.; Nair, P. B.; Tan, M., A compact RBF-FD based meshless method for the incompressible Navier-Stokes equations, J. Eng. Marit. Environ., 223, 275-290, (2009)
[7] Davydov, O.; Oanh, D. T., Adaptive meshless centres and RBF stencils for Poisson equation, J. Comput. Phys., 230, 287-304, (2011) · Zbl 1207.65136
[8] Driscoll, T. A.; Fornberg, B., Interpolation in the limit of increasingly flat radial basis functions, Comput. Math. Appl., 43, 413-422, (2002) · Zbl 1006.65013
[9] Erlebacher, G.; Saule, E.; Flyer, N.; Bollig, E., Acceleration of derivative calculations with application to radial basis function: finite-differences on the intel mic architecture, (ICS ’14 Proceedings of the 28th ACM International Conference on Supercomputing, (2014), ACM New York, NY), 263-272
[10] Fasshauer, G. E., Meshfree approximation methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6, (2007), World Scientific Publishers Singapore · Zbl 1123.65001
[11] Flyer, N., Exact polynomial reproduction for oscillatory radial basis functions on infinite lattices, Comput. Math. Appl., 51, 1199-1208, (2006) · Zbl 1154.41015
[12] Flyer, N.; Barnett, G. A.; Wicker, L. J., Enhancing finite differences with radial basis functions: experiments on the Navier-Stokes equations, J. Comput. Phys., 316, 39-62, (2016) · Zbl 1349.76460
[13] Flyer, N.; Lehto, E.; Blaise, S.; Wright, G. B.; St-Cyr, A., A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere, J. Comput. Phys., 231, 4078-4095, (2012) · Zbl 1394.76078
[14] Fornberg, B.; Driscoll, T. A.; Wright, G.; Charles, R., Observations on the behavior of radial basis functions near boundaries, Comput. Math. Appl., 43, 473-490, (2002) · Zbl 0999.65005
[15] Fornberg, B.; Flyer, N., Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids, Adv. Comput. Math., 23, 5-20, (2005) · Zbl 1067.65015
[16] Fornberg, B.; Flyer, N., A primer on radial basis functions with applications to the geosciences, (2015), SIAM Philadelphia · Zbl 1358.86001
[17] Fornberg, B.; Flyer, N., Solving PDEs with radial basis functions, Acta Numer., 24, 215-258, (2015) · Zbl 1316.65073
[18] Fornberg, B.; Flyer, N.; Hovde, S.; Piret, C., Locality properties of radial basis function expansion coefficients for equispaced interpolation, IMA J. Numer. Anal., 28, 1, 121-142, (2008) · Zbl 1134.65013
[19] Fornberg, B.; Larsson, E.; Flyer, N., Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput., 33, 2, 869-892, (2011) · Zbl 1227.65018
[20] Fornberg, B.; Larsson, E.; Wright, G. B., A new class of oscillatory radial basis functions, Comput. Math. Appl., 51, 1209-1222, (2006) · Zbl 1161.41304
[21] Fornberg, B.; Lehto, E.; Powell, C., Stable calculation of Gaussian-based RBF-FD stencils, Comput. Math. Appl., 65, 627-637, (2013) · Zbl 1319.65011
[22] Fornberg, B.; Wright, G.; Larsson, E., Some observations regarding interpolants in the limit of flat radial basis functions, Comput. Math. Appl., 47, 37-55, (2004) · Zbl 1048.41017
[23] Fornberg, B.; Zuev, J., The Runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput. Math. Appl., 54, 379-398, (2007) · Zbl 1128.41001
[24] Iske, A., On the approximation order and numerical stability of local Lagrange interpolation by polyharmonic splines, (Haussmann, W.; Jetter, K.; Reimer, M.; Stöckler, J., Modern Developments in Multivariate Approximation, International Series of Numerical Mathematics, vol. 145, (2003), Birkhäuser Verlag Basel), 153-165 · Zbl 1040.41002
[25] Iske, A., Multiresolution methods in scattered data modelling, Lecture Notes in Computational Science and Engineering, vol. 37, (2004), Springer-Verlag Heidelberg · Zbl 1057.65004
[26] Javaran, S. H.; Khaji, N.; Noorzad, A., First kind Bessel function (J-Bessel) as radial basis function for plane dynamic analysis using dual reciprocity boundary element method, Acta Mech., 218, 247-258, (2011) · Zbl 1398.74440
[27] Larsson, E.; Lehto, E.; Heryudono, A.; Fornberg, B., Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions, SIAM J. Sci. Comput., 35, A2096-A2119, (2013) · Zbl 1362.65026
[28] Nocedal, J.; Wright, S., Numerical optimization, (2006), Springer Science & Business Media · Zbl 1104.65059
[29] Roque, C. M.C.; Cunha, D.; Shu, D.; Ferreira, A. J.M., A local radial basis functions - finite difference technique for the analysis of composite plates, Eng. Anal. Bound. Elem., 35, 363-374, (2011) · Zbl 1259.74078
[30] Schaback, R., Multivariate interpolation by polynomials and radial basis functions, Constr. Approx., 21, 293-317, (2005) · Zbl 1076.41003
[31] Shan, Y. Y.; Shu, C.; Lu, Z. L., Application of local MQ-DQ method to solve 3D incompressible viscous flows with curved boundary, Comput. Model. Eng. Sci., 25, 99-113, (2008)
[32] Shankar, V.; Wright, G. B.; Kirby, R. M.; Fogelson, A. L., A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces, J. Sci. Comput., 63, 3, 745-768, (2015) · Zbl 1319.65079
[33] Shi, Y.; Chan, C. H., Improved 3D full-wave Green’s function interpolation method, Electron. Lett., 47, 3, 174-175, (2011)
[34] Stevens, D.; Power, H.; Lees, M.; Morvan, H., The use of PDE centers in the local RBF Hermitean method for 3D convective-diffusion problems, J. Comput. Phys., 228, 4606-4624, (2009) · Zbl 1167.65447
[35] Tillenius, M.; Larsson, E.; Lehto, E.; Flyer, N., A scalable RBF-FD method for atmospheric flow, J. Comput. Phys., 288, 406-422, (2015) · Zbl 1349.86014
[36] Wang, Z. H.; Huang, Z.; Zhang, W.; Xi, G., A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations, Numer. Heat Transf., Part B, 67, 320-337, (2015)
[37] Wendland, H., Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17, (2005), Cambridge University Press Cambridge · Zbl 1075.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.